Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Eukaryotic cells have evolved to use complex pathways for DNA damage signaling and repair to maintain genomic integrity. RNF168 is a novel E3 ligase that functions downstream of ATM,γ-H2A.X, MDC1, and RNF8. It has been shown to ubiquitylate histone H2A and to facilitate the recruitment of other DNA damage response proteins, including 53BP1, to sites of DNA break. In addition, RNF168 mutations have been causally linked to the human RIDDLE syndrome. In this study, we report that Rnf168(-/-) mice are immunodeficient and exhibit increased radiosensitivity. Rnf168(-/-) males suffer from impaired spermatogenesis in an age-dependent manner. Interestingly, in contrast to H2a.x(-/-), Mdc1(-/-), and Rnf8(-/-) cells, transient recruitment of 53bp1 to DNA double-strand breaks was abolished in Rnf168(-/-) cells. Remarkably, similar to 53bp1 inactivation, but different from H2a.x deficiency, inactivation of Rnf168 impairs long-range V(D)J recombination in thymocytes and results in long insertions at the class-switch junctions of B-cells. Loss of Rnf168 increases genomic instability and synergizes with p53 inactivation in promoting tumorigenesis. Our data reveal the important physiological functions of Rnf168 and support its role in both γ-H2a.x-Mdc1-Rnf8-dependent and -independent signaling pathways of DNA double-strand breaks. These results highlight a central role for RNF168 in the hierarchical network of DNA break signaling that maintains genomic integrity and suppresses cancer development in mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084200PMC
http://dx.doi.org/10.1371/journal.pgen.1001381DOI Listing

Publication Analysis

Top Keywords

genomic instability
8
riddle syndrome
8
pathways dna
8
dna damage
8
genomic integrity
8
dna break
8
dna double-strand
8
double-strand breaks
8
dna
6
rnf168
6

Similar Publications

The RecBC complex protects single-stranded DNA gaps during lesion bypass.

Proc Natl Acad Sci U S A

September 2025

Cancer Research Center of Marseille: Team DNA Damage and Genome Instability|CNRS, Inserm, Institut Paoli-Calmettes, Aix Marseille Université, Marseille 13009, France.

Following encounter with an unrepaired DNA lesion, replication is halted and can restart downstream of the lesion leading to the formation of a single-stranded DNA (ssDNA) gap. To complete replication, this ssDNA gap is filled in by one of the two lesion tolerance pathways: the error-prone Translesion Synthesis (TLS) or the error-free Homology Directed Gap Repair (HDGR). In the present work, we evidence a role for the RecBC complex distinct from its canonical function in homologous recombination at DNA double strand breaks.

View Article and Find Full Text PDF

The mutagenic translesion synthesis (TLS) pathway, which is critically dependent on REV1's ability to recruit inserter TLS polymerases and the POLζ extender polymerase, enables cancer cells to bypass DNA lesions while introducing mutations that likely contribute to the development of chemotherapy resistance and secondary malignancies. Targeting this pathway represents a promising therapeutic strategy. Here, we demonstrate that the expression of the C-terminal domain (CTD) of human REV1, a ca.

View Article and Find Full Text PDF

Background: USP37, a versatile deubiquitinase, plays a pivotal role in numerous cellular functions. Although its involvement in cancer development is well-established, the comprehensive pan-cancer analysis of USP37 remains relatively uncharted.

Methods: RNA sequencing data from both normal and cancerous tissues were retrieved from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is the fourth leading cause of cancer-related death globally. Tumor profiling has revealed actionable gene alterations that guide treatment strategies and enhance survival. Among Hispanics living in Puerto Rico (PRH), GC ranks among the top 10 causes of cancer-related death.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is a heterogeneous kidney malignancy driven by complex genetic, molecular, and metabolic alterations. Emerging evidence implicates centrosome dysfunction and autophagy dysregulation in RCC initiation, progression, and resistance to therapy. The centrosome plays a critical role in mitotic fidelity, and its dysfunction often leads to chromosomal and genomic instability.

View Article and Find Full Text PDF