98%
921
2 minutes
20
NiO-Ce0.8Sm0.2O1.9 (NiO-SDC) nanocomposite powders applied as promising anode material for low-temperature solid oxide fuel cells (SOFCs) were synthesized by hydroxide co-precipitation method using NH3 x H2O, NaOH and NH3 x H2O + NaOH as precipitation agents. The crystal phases, morphologies and sintering behavior of the synthesized NiO-SDC nanocomposite powders were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and sintering experiments. The effect of precipitation agents on the synthesis of the NiO-SDC nanocomposite powders was discussed. Results show that different precipitation agents influence greatly the synthesis and characteristics of the NiO-SDC nanocomposite powders. The NiO-SDC nanocomposite powders synthesized with NH3 x H2O deviate from the original composition due to the loss of Ni. The loss of Ni is avoided and nano-sized NiO-SDC composite powders are synthesized, when NaOH and NH3 x H2O + NaOH are used as precipitation agents. The NiO-SDC nanocomposite powders can be synthesized at relatively low temperature using NH3 x H2O + NaOH as precipitation agent, and the synthesized NiO-SDC nanocomposite powders show good sintering characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2011.3122 | DOI Listing |
Luminescence
September 2025
Department of Physics, Saveetha Engineering College (Autonomous), Chennai, Tamilnadu, India.
The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Horticultural Science, Texas A&M University, College Station, Texas 77843, United States.
The limited water solubility and environmental instability of natural pesticidal compounds impede their broader agricultural use. This study reports an amphiphile-assisted nanoprecipitation method to imbibe azadirachtin-rich neem seed extract (NSE) within a glycine carrier matrix, yielding a stable nanocomposite biopesticide. The formulation, prepared using polyoxyethylene sorbitan monooleate as a stabilizer and glycine as the matrix former, followed by lyophilization, exhibited a hydrodynamic diameter of ∼8 nm when redispersed in water.
View Article and Find Full Text PDFDiscov Nano
September 2025
Department of Conservative Dentistry and Endodontics, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, 603203, India.
This study focuses on tripartite synthesis of Silver (AgNPs), Mesoporous Silica (MSNs), and Hydroxyapatite (n-HAp) nanoparticles with aqueous extract of Cissus quadrangularis (Veldt grape plant; Indian name: Pirandai) as a reducing agent. The dried and powdered form of the plant was subjected to aqueous extraction. The phytochemicals analysis was qualitatively estimated which detected the presence of alkaloid, tannin, phenol, terpenoid, steroid and saponin.
View Article and Find Full Text PDFSoft Matter
September 2025
Transport phenomena, Chemical engineering Department, Faculty of applied sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands.
Polymer membranes are prime candidates for separation and purification processes, with their functionality enhanced by nanoparticle incorporation and diverse polymer structures. Poly(ionic liquids) (PILs), highly charged electrolyte-like polymers, are gaining interest as membrane polymer matrices. Embedding photocatalytic nanoparticles enables water purification through filtration and degradation reactions.
View Article and Find Full Text PDFSci Rep
August 2025
Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, 1349, Bangladesh.
In this study, we report the improved photocatalytic performance of Hydroxyapatite-incorporated Zinc Oxide Nanocomposite (ZnO@HAp), synthesized using a simple precipitation method. The catalyst was characterized using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopic analysis (FT-IR), Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-DRS), Scanning Electron Microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The formation of ZnO@HAp was confirmed by XRD, FT-IR, EDAX, and XPS.
View Article and Find Full Text PDF