Electrically driven magnetic relaxation in multiferroic LuFe2O4.

J Phys Condens Matter

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

Published: December 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report the electrical control of magnetization in multiferroic LuFe2O4 by applying short current pulses. The magnitude of the induced magnetization change depends on the pulse width and current density. The voltage variation during the applied current pulses evidences an electric-field-induced breakdown of charge order and excludes the role of Joule heating. This current driven magnetization change can be interpreted with a three-temperature model in which the delocalized electrons accelerate spin relaxation through a strong spin-charge coupling inherent to multiferroicity. The electrically assisted magnetic relaxation provides a new approach for electrical control of magnetization.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/22/49/496001DOI Listing

Publication Analysis

Top Keywords

magnetic relaxation
8
multiferroic lufe2o4
8
electrical control
8
control magnetization
8
current pulses
8
magnetization change
8
electrically driven
4
driven magnetic
4
relaxation multiferroic
4
lufe2o4 report
4

Similar Publications

Parasagittal dural space and arachnoid granulations morphology in pre-clinical and early clinical multiple sclerosis.

Mult Scler

September 2025

Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, VA Medical Center, TN Valley Healthcare System, Nashville, TN, USA.

Background: There is limited knowledge on the post-glymphatic structures such as the parasagittal dural (PSD) space and the arachnoid granulations (AGs) in multiple sclerosis (MS).

Objectives: To evaluate differences in volume and macromolecular content of PSD and AG between people with newly diagnosed MS (pwMS), clinically isolated syndrome (pwCIS), or radiologically isolated syndrome (pwRIS) and healthy controls (HCs) and their associations with clinical and radiological disease measures.

Methods: A total of 69 pwMS, pwCIS, pwRIS, and HCs underwent a 3.

View Article and Find Full Text PDF

We report the synthesis and characterization of a new Schiff base ligand (HL), derived from 2-picolylamine and 2-hydroxy-3-methoxy-5-methylbenzaldehyde. Its reaction with Ni(NO)·6HO and Ln(NO)·HO (Ln = Gd, Tb, Dy) in the presence of triethylamine affords a carbonato-bridged family of heterobimetallic NiLn complexes: [NiLn(L)(L')(μ-CO)(NO)]·MeOH·HO (). During the complexation reaction, ligand HL undergoes an oxidation, followed by C-C coupling to generate a secondary ligand (HL').

View Article and Find Full Text PDF

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF

First-principles insights into structure and magnetism in ultra-small tetrahedral iron oxide nanoparticles.

Phys Chem Chem Phys

September 2025

Masaryk University, Faculty of Science, Department of Chemistry, Kotlářská 2, Brno, 611 37, Czech Republic.

Structural and magnetic properties of ultra-small tetrahedron-shaped iron oxide nanoparticles were investigated using density functional theory. Tetrahedral and truncated tetrahedral models were considered in both non-functionalized form and with surfaces passivated by pseudo-hydrogen atoms. The focus on these two morphologies reflects their experimental relevance at this size scale and the feasibility of performing fully relaxed, atomistically resolved first-principles simulations.

View Article and Find Full Text PDF