Retrospectively gated cardiac cine imaging with temporal and spatial acceleration.

Magn Reson Imaging

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Published: May 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Parallel imaging methods are routinely used to accelerate the image acquisition process in cardiac cine imaging. The addition of a temporal acceleration method, whereby k-space is sampled differently for different time frames, has been shown in prior work to improve image quality as compared to parallel imaging by itself. However, such temporal acceleration strategies prove difficult to combine with retrospectively gated cine imaging. The only currently published method to feature such combination, by Hansen et al. [Magn Reson Med 55 (2006) 85-91] tends to be associated with prohibitively long reconstruction times. The goal of the present work was to develop a retrospectively gated cardiac cine method that features both parallel imaging and temporal acceleration, capable of achieving significant acceleration factors on commonly available hardware and associated with reconstruction times short enough for practical use in a clinical context. Seven cardiac patients and a healthy volunteer were recruited and imaged, with acceleration factors of 3.5 or 4.5, using an eight-channel product cardiac array on a 1.5-T system. The prescribed FOV value proved slightly too small in three patients, and one of the patients had a bigemini condition. Despite these additional challenges, good-quality results were obtained for all slices and all patients, with a reconstruction time of 0.98±0.07 s per frame, or about 20 s for a 20-frame slice, using a single processor on a single PC. As compared to using parallel imaging by itself, the addition of a temporal acceleration strategy provided much resistance to artifacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079346PMC
http://dx.doi.org/10.1016/j.mri.2011.01.003DOI Listing

Publication Analysis

Top Keywords

parallel imaging
16
temporal acceleration
16
retrospectively gated
12
cardiac cine
12
cine imaging
12
imaging temporal
12
gated cardiac
8
imaging addition
8
addition temporal
8
compared parallel
8

Similar Publications

Linear magnetic nanoparticle structures as key feature in magnetic particle imaging.

Phys Med Biol

September 2025

Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University Medical Faculty, Pauwelsstraße 20, Aachen, 52074, GERMANY.

Objective: Magnetic particle imaging (MPI) opens huge possibilities in image-guided therapy. Its effectiveness is strongly influenced by the quality of the magnetic nanoparticles (MNP) used as tracers. Besides MNP optimization following different synthesis routes, MNP assembly into linear structures can significantly enhance their performance in MPI.

View Article and Find Full Text PDF

This commentary reflects three decades of interaction between the Cuban neuroinformatics tradition and the statistical parametric mapping (SPM) framework. From the early development of neurometrics in Cuba to global initiatives like the Global Brain Consortium, our trajectory has paralleled and intersected with that of SPM. We highlight shared commitments to generative modeling, Bayesian inference, and population-level brain mapping, as shaped through collaborations, workshops, and joint theoretical work with Karl Friston and his group.

View Article and Find Full Text PDF

Lightweight hybrid Mamba2 for unsupervised medical image registration.

Med Phys

September 2025

School of Computer, Electronics and Information, Guangxi University, Nanning, China.

Background: Deformable medical image registration is a critical task in medical imaging-assisted diagnosis and treatment. In recent years, medical image registration methods based on deep learning have made significant success by leveraging prior knowledge, and the registration accuracy and computational efficiency have been greatly improved. Models based on Transformers have achieved better performance than convolutional neural network methods (ConvNet) in image registration.

View Article and Find Full Text PDF

Hand muscle strength in Parkinson's disease: A Sarcopenic epiphenomenon or a meaningful biomarker?

Parkinsonism Relat Disord

September 2025

Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter, Turku University Hospital, Turku, Finland. Electronic address:

Introduction: Sarcopenia, the age-related loss of muscle mass and function, has been reported in Parkinson's disease (PD). While grip strength is a key marker of sarcopenia and has been linked to PD risk and progression, its relationship with underlying neurodegenerative processes remains unclear. This study examines whether grip strength is impaired in PD and reflects disease severity or dopaminergic function.

View Article and Find Full Text PDF

The authors present a rare variant of celiac axis anatomy including acute angle of departure, ultra-short length and «parallel» course of the main branches. When analyzing the literature on this problem, they found no similar reports. This clinical example once again emphasizes significant variability of celiac axis anatomy and the need for a thorough examination of patients using all possible diagnostic methods, especially before surgery.

View Article and Find Full Text PDF