Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Opportunistic viral infections can cause serious morbidity and mortality in immunocompromised patients after allogeneic stem cell transplantation. Clinical studies have shown that adoptive transfer of donor-derived T cells specific for cytomegalovirus (CMV), Epstein-Barr virus (EBV), or human adenovirus (HAdV) can be a safe and effective treatment of infections with these major viral pathogens. The aim of this study was to develop a method for the simultaneous isolation of coordinated CD8(+) and CD4(+) memory T-cell responses against a broad repertoire of viral epitopes. To ensure that the method was applicable to a wide variety of virus-specific T cells that may differ in phenotypic and functional properties, we focused on T cells specific for the persistent viruses, CMV and EBV, and T cells specific for HAdV and influenza (FLU), which are not repetitively activated in vivo after initial viral clearance. Following in vitro activation, nearly all T cells specific for these viruses produced interferon γ (IFN-γ) and tumor necrosis factor α, and expressed CD137, whereas the populations varied in the production of interleukin-2, degranulation, and expression of phenotypic markers. Different kinetics of IFN-γ production were observed in CMV/EBV-specific T cells and HAdV/FLU-specific T cells. However, after the stimulation of peripheral blood from seropositive donors with viral protein-spanning peptide pools, the activated virus-specific CD8(+) and CD4(+) T cells could be simultaneously isolated by either IFN-γ-based or CD137-based enrichment. This study provides an efficient and widely applicable strategy for the isolation of virus-specific T cells, which may be used for the reconstitution of virus-specific immunity in allogeneic stem cell transplantation recipients.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CJI.0b013e318213cb90DOI Listing

Publication Analysis

Top Keywords

cells specific
20
cd8+ cd4+
12
allogeneic stem
12
stem cell
12
cell transplantation
12
cells
10
simultaneous isolation
8
cd4+ cells
8
virus-specific cells
8
specific
5

Similar Publications

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

In the past decades, several authors have investigated the possibility that genome size is correlated with metabolic rates, obtaining conflicting results. The main biological explanation among the supporters of this correlation was related to the nucleotypic effect of the genome size, which, determining the cellular volume and hence the surface area-to-volume ratio, influences cellular metabolism. In the present study, I tested a different hypothesis: genome size, influencing red blood cell (RBC) volume, is correlated with capillary density and diameter.

View Article and Find Full Text PDF

Unlabelled: Autoimmune haemolytic anaemia (AIHA) is caused by antibody-mediated destruction of red blood cells. There are two broad categories of AIHA: warm and cold, both categorized by the thermal reactivity of the autoantibodies. Cold agglutinin disease (CAD) occurs at temperatures below normal body temperature and primarily involves IgM antibodies.

View Article and Find Full Text PDF

Background: Blinatumomab and inotuzumab ozogamicin (InO) are B-cell targeted agents used in the frontline and relapsed/refractory treatment of B-cell acute lymphoblastic leukaemia (B-ALL). Blinatumomab, a bispecific T-cell engager that targets CD19 and CD3, and InO, an antibody-drug conjugate targeting CD22, have both shown efficacy. However, recent reports have noted lineage conversion as a complication when these agents are used individually or sequentially.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF