98%
921
2 minutes
20
A γ-hexachlorocyclohexane (HCH)-degrading bacterium, Sphingomonas sp. MM-1, was isolated from soil contaminated with HCH isomers. Cultivation of MM-1 in the presence of γ-HCH led to the detection of five γ-HCH metabolites, γ-pentachlorocyclohexene, 2,5-dichloro-2,5-cyclohexadiene-1,4-diol, 2,5-dichlorohydroquinone, 1,2,4-trichlorobenzene, and 2,5-dichlorophenol, strongly suggesting that MM-1 has the lin genes for γ-HCH degradation originally identified in the well-studied γ-HCH-degrading strain Sphingobium japonicum UT26. Southern blot, PCR amplification, and sequencing analyses indicated that MM-1 has seven lin genes for the conversion of γ-HCH to β-ketoadipate (six structural genes, linA to linF, and one regulatory gene, linR). MM-1 carried four plasmids, of 200, 50, 40, and 30 kb. Southern blot analysis revealed that all seven lin genes were dispersed across three of the four plasmids, and that IS6100, often found close to the lin genes, was present on all four plasmids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1271/bbb.100652 | DOI Listing |
Bioinformatics
September 2025
Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Motivation: RNA velocity has become a powerful tool for uncovering transcriptional dynamics in snapshot single-cell data. However, current RNA velocity approaches often assume constant transcriptional rates and treat genes independently with gene-specific times, which may introduce biases and deviate from biological realities. Here, we present InterVelo, a novel deep learning framework that simultaneously learns cellular pseudotime and RNA velocity.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.
View Article and Find Full Text PDFPest Manag Sci
September 2025
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
Background: Peroxisomes are essential for the metabolism of very long-chain fatty acids (VLCFAs). Their biogenesis requires peroxins encoded by the PEX genes. While the significance of PEX14 has been established in the major rice pest the brown planthopper (Nilaparvata lugens), the role of PEX16 as a peroxisome biogenesis initiator remains uncharacterized in this pest.
View Article and Find Full Text PDFPlant Cell Physiol
September 2025
Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC.
Water deficit stress causes devastating loss of crop yield worldwide. Improving crop drought resistance has become an urgent issue. Here we report that a group of abscisic acid (ABA)/drought stress-induced monocot-specific, intrinsically disordered, and highly proline-rich proteins, REPETITIVE PROLINE-RICH PROTEINS (RePRPs), play pivotal roles in drought resistance in rice seedlings.
View Article and Find Full Text PDFHealth Sci Rep
September 2025
Department of Dermatology the Union Hospital, Fujian Medical University Fuzhou People's Republic of China.
Background And Aims: Several observational studies have reported inconsistent associations between dyslipidaemia, stains use and atopic dermatitis (AD). Nevertheless, the available data on the effects of -C-lowering as well as TG-lowering drugs remain inconclusive and limited. The aim of this study was to evaluate the causal association of lipid traits and long-term use of lipid-lowering drugs on AD risk.
View Article and Find Full Text PDF