98%
921
2 minutes
20
The cytochrome bo(3) ubiquinol oxidase from Escherichia coli resides in the bacterial cytoplasmic membrane and catalyzes the two-electron oxidation of ubiquinol-8 and four-electron reduction of O(2) to water. The one-electron reduced semiquinone forms transiently during the reaction, and the enzyme has been demonstrated to stabilize the semiquinone. The semiquinone is also formed in the D75E mutant, where the mutation has little influence on the catalytic activity, and in the D75H mutant, which is virtually inactive. In this work, wild-type cytochrome bo(3) as well as the D75E and D75H mutant proteins were prepared with ubiquinone-8 (13)C-labeled selectively at the methyl and two methoxy groups. This was accomplished by expressing the proteins in a methionine auxotroph in the presence of l-methionine with the side chain methyl group (13)C-labeled. The (13)C-labeled quinone isolated from cytochrome bo(3) was also used for the generation of model anion radicals in alcohol. Two-dimensional pulsed EPR and ENDOR were used for the study of the (13)C methyl and methoxy hyperfine couplings in the semiquinone generated in the three proteins indicated above and in the model system. The data were used to characterize the transferred unpaired spin densities on the methyl and methoxy substituents and the conformations of the methoxy groups. In the wild type and D75E mutant, the constraints on the configurations of the methoxy side chains are similar, but the D75H mutant appears to have altered methoxy configurations, which could be related to the perturbed electron distribution in the semiquinone and the loss of enzymatic activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060462 | PMC |
http://dx.doi.org/10.1074/jbc.M110.206821 | DOI Listing |
Eur J Pharmacol
June 2025
College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China. Electronic address: su
Nitroxoline (NIT) has been approved for the treatment of uncomplicated urinary tract infections (UTIs) for more than half a century, yet its antimicrobial properties remain incompletely understood. Here, we determined the intricate connections between NIT's metal-chelating capabilities and its antibacterial activity. Metal ion binding characteristics were measured by Ultraviolet-visible (UV-vis) spectroscopy.
View Article and Find Full Text PDFACS Synth Biol
December 2024
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland.
J Biosci Bioeng
December 2024
Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan; RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan. Electronic address:
Gamma-aminobutyric acid (GABA), which is synthesized from l-glutamic acid via glutamate decarboxylase (Gad), is used as food, supplements, and biodegradable plastics. Our previous study demonstrated an Escherichia coli mutant (ΔΔ) strain, lacking type I NADH dehydrogenase (NDH-I) and cytochrome bo oxidase (Cytbo), produced 7 g/L glutamic acid on MS1 glucose-minimal medium. In this study, the ΔΔ strain was used for improving GABA production.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
August 2024
Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands; Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands.
Cytochrome bo quinol oxidase belongs to the heme‑copper-oxidoreductase (HCO) superfamily, which is part of the respiratory chain and essential for cell survival. While the reaction mechanism of cyt bo has been studied extensively over the last decades, specific details about its substrate binding and product release have remained unelucidated due to the lack of structural information. Here, we report a 2.
View Article and Find Full Text PDFInt J Mol Sci
January 2024
Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy.
The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O to 2HO taking out electrons from quinol or cytochrome . Living bacteria often deal with carbon monoxide (CO) which can act as both a signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are potential targets for CO.
View Article and Find Full Text PDF