98%
921
2 minutes
20
Microarrays provide exciting opportunities in the field of large-scale proteomics. With the aim to elucidate enzymatic activity and profiles within native biological samples, we developed a microarray comprising a focused positional-scanning library of enzyme inhibitors. The library was diversified across P(1)-P(4) positions, creating 270 different inhibitor sublibraries which were immobilized onto avidin slides. The peptide aldehyde-based small-molecule microarray (SMM) specifically targeted cysteine proteases, thereby enabling large-scale functional assessment of this subgroup of proteases, within fluorescently labeled samples, including pure proteins, cellular lysates, and infected samples. The arrays were shown to elicit binding fingerprints consistent with those of model proteins, specifically caspases and purified cysteine proteases from parasites (rhodesein and cruzain). When tested against lysates from apoptotic Hela and red blood cells infected with Plasmodium falciparum, clear signatures were obtained that were readily attributable to the activity of constituent proteases within these samples. Characteristic binding profiles were further able to distinguish various stages of the parasite infection in erythrocyte lysates. By converting one of our brightest microarray hits into a probe, putative protein markers were identified and pulled down from within apoptotic Hela lysates, demonstrating the potential of target validation and discovery. Taken together, these results demonstrate the utility of targeted SMMs in dissecting cellular biology in complex proteomic samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja109597v | DOI Listing |
Arch Pharm (Weinheim)
September 2025
College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China.
The SARS-CoV-2 pandemic has spurred global efforts to develop therapeutic approaches. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication and a key target for therapeutic development. In this study, 22 thiosemicarbazone derivatives were synthesized.
View Article and Find Full Text PDFJ Mol Histol
September 2025
Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang, 050017, China.
Numerous people experiencing acute myocardial infarction are also experiencing myocardial ischemia-reperfusion injury (MIRI). Pyroptosis is a core mechanism in MIRI. Tongxinluo (TXL) has a significant protective effect on endothelial cell function.
View Article and Find Full Text PDFOncol Res
September 2025
Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
Objectives: Proteasomes, multi-subunit proteases, are key actors of cellular protein catabolism and a number of regulatory processes. The detection of subtle proteasome functioning in tumors may contribute to our understanding of the mechanisms of cancer development. The current study aimed to identify the role of low molecular mass protein 2 (LMP2), a proteasome immune subunit, in the development of mouse colon 26 (C26) adenocarcinoma.
View Article and Find Full Text PDFContact (Thousand Oaks)
September 2025
Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany.
Many Gram-negative bacterial pathogens deploy type III effector proteins (T3Es) to manipulate host cellular processes and suppress immune responses. Increasing evidence suggests that certain T3Es mimic eukaryotic FFAT (two phenylalanines in an acidic tract) motifs, enabling interaction with vesicle-associated membrane protein (VAMP)-associated proteins (VAPs). These interactions likely help pathogens target and exploit host membrane contact sites.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA.
Microbiota, which plays a vital role in susceptibility to Clostridioides difficile infection (CDI), synthesizes butyrate. Enteric glia is a component of the enteric nervous system (ENS) and is affected by C. difficile toxins A (TcdA) and B (TcdB).
View Article and Find Full Text PDF