98%
921
2 minutes
20
Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k(cat) = 2.0 s(-1); k(cat)/K(m) = 2.5 × 10(3) M(-1) s(-1)). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn(2+) prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k(cat) and k(cat)/K(m) values of 200 s(-1) and 5 × 10(5) M(-1) s(-1), respectively. The apoenzyme was prepared and reconstituted with Fe(2+), Zn(2+), or Mn(2+). In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe(II)/Fe(II)]-ADE was oxidized to [Fe(III)/Fe(III)]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe(III)/Fe(III)]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Mössbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 Å resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the identity of the rate-limiting steps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059353 | PMC |
http://dx.doi.org/10.1021/bi101788n | DOI Listing |
Res Vet Sci
September 2025
Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain. Electronic address:
Recent years have seen advances in clinical biochemistry of domestic animals which have highlighted comparative differences between species and have also identified fundamental aspects of the biochemical mechanisms in physiological conditions and disease, that have implications across species, including human, health and welfare. From investigations in diverse species using biochemical, immunological, proteomic and metabolomic approaches a series of species particularities and unexpected results for some biomarkers have been made. These observations cover (1) the differences between species in the acute phase protein (APP) response to infection and inflammation; (2) the non-hepatic synthesis and release in the mammary gland, adipose tissue and intestine of APP (3) the response of haptoglobin (HP) as a biomarker for stress; (4) observations in non-mammalian species related to hemopexin and HP; (5) the response of bile acids in milk to mastitis; (6) barley serine protease inhibitors being identified in bovine faeces; (7) alkaline phosphatase being present in bovine nasal secretion; (8) saliva findings with analytes such as adenine deaminase showing different activity between saliva and serum and a detergent-like surfactant protein, latherin being found in equine saliva and sweat and (9) serum enzymes and selective muscle protein reaction of Atlantic salmon as an example of the differences in biochemistry between terrestrial and aquatic species.
View Article and Find Full Text PDFSci Rep
August 2025
Sanmen People's Hospital, Taizhou, Zhejiang, China.
Tuberculous pleural effusion (TPE) can be effectively diagnosed using adenosine deaminase (ADA); however, high ADA levels in pleural effusion (PE) have also been shown to be linked to other diseases. In this study, we aimed to develop and validate a prediction model and differentiate TPE in patients with high ADA levels. This retrospective analysis of patients with ADA levels ≥ 25 IU/L was conducted at our healthcare institution between January 2017 and December 2023.
View Article and Find Full Text PDFAdv Sci (Weinh)
July 2025
Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, 73104, USA.
CRISPR base editors are crucial for precise genome manipulation. Existing APOBEC-based cytosine base editors (CBEs), while powerful, exhibit indels and sequence context limitations, and editing CC and GC motifs is challenging and inefficient. To address these challenges, existing tRNA adenine deaminase (TadA)-derived CBEs are evaluated in zebrafish, and a series of zTadCBE variants is developed that demonstrate high editing efficiency, minimized off-target effects, and an expanded targeting range compared to existing tools.
View Article and Find Full Text PDFNat Biotechnol
July 2025
Department of Chemistry, The University of Chicago, Chicago, IL, USA.
Base editors (BEs), covalent fusions of a cytosine or adenine deaminase with a nuclease-impaired CRISPR protein, mediate site-specific conversion of C:G to T:A (CBEs) or A:T to G:C (ABEs) in the genome. Existing BEs modify all cytosines or adenines within the editing window, which limits their precision. Here we engineer nucleotide and context specificity of the Escherichia coli transfer RNA-specific adenosine deaminase (TadA) to pinpoint cytosine editing.
View Article and Find Full Text PDFScand J Immunol
July 2025
H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan, Republic of Armenia.
Adenosine (Ado) is an important purine that regulates numerous physiological functions. Adenosine deaminase (ADA) catalyses the irreversible deamination of Ado and its derivatives. Ado and ADA are the essential players in the immune system, but their roles often are opposite, mutually exclusive and competitive.
View Article and Find Full Text PDF