98%
921
2 minutes
20
The Alzheimer BACE1 enzyme cleaves numerous substrates, with largely unknown physiological consequences. We have previously identified the contribution of elevated BACE1 activity to voltage-gated sodium channel Na(v)1.1 density and neuronal function. Here, we analyzed physiological changes in sodium channel metabolism in BACE1-null mice. Mechanistically, we first confirmed that endogenous BACE1 requires its substrate, the β-subunit Na(v)β(2), to regulate levels of the pore-forming α-subunit Na(v)1.1 in cultured primary neurons. Next, we analyzed sodium channel α-subunit levels in brains of BACE1-null mice at 1 and 3 months of age. At both ages, we found that Na(v)1.1 protein levels were significantly decreased in BACE1-null versus wild-type mouse brains, remaining unchanged in BACE1-heterozygous mouse brains. Interestingly, levels of Na(v)1.2 and Na(v)1.6 α-subunits also decreased in 1-month-old BACE1-null mice. In the hippocampus of BACE1-null mice, we found a robust 57% decrease of Na(v)1.1 levels. Next, we performed surface biotinylation studies in acutely dissociated hippocampal slices from BACE1-null mice. Hippocampal surface Na(v)1.1 levels were significantly decreased, but Na(v)1.2 surface levels were increased in BACE1-null mice perhaps as a compensatory mechanism for reduced surface Na(v)1.1. We also found that Na(v)β(2) processing and Na(v)1.1 mRNA levels were significantly decreased in brains of BACE1-null mice. This suggests a mechanism consistent with BACE1 activity regulating mRNA levels of the α-subunit Na(v)1.1 via cleavage of cell-surface Na(v)β(2). Together, our data show that endogenous BACE1 activity regulates total and surface levels of voltage-gated sodium channels in mouse brains. Both decreased Na(v)1.1 and elevated surface Na(v)1.2 may result in a seizure phenotype. Our data caution that therapeutic BACE1 activity inhibition in Alzheimer disease patients may affect Na(v)1 metabolism and alter neuronal membrane excitability in Alzheimer disease patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048697 | PMC |
http://dx.doi.org/10.1074/jbc.M110.134692 | DOI Listing |
Mol Psychiatry
November 2021
Department of Neuroscience, UConn Health, Farmington, CT, USA.
BACE1 initiates production of β-amyloid peptides (Aβ), which is associated with cognitive dysfunction in Alzheimer's disease (AD) due to abnormal oligomerization and aggregation. While BACE1 inhibitors show strong reduction in Aβ deposition, they fail to improve cognitive function in patients, largely due to its role in synaptic function. We show that BACE1 is required for optimal release of synaptic vesicles.
View Article and Find Full Text PDFJ Neurosci
November 2019
Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany,
Cleavage of amyloid precursor protein (APP) by β-secretase BACE1 initiates the production and accumulation of neurotoxic amyloid-β peptides, which is widely considered an essential pathogenic mechanism in Alzheimer's disease (AD). Here, we report that BACE1 is essential for normal auditory function. Compared with wild-type littermates, BACE1 mice of either sex exhibit significant hearing deficits, as indicated by increased thresholds and reduced amplitudes in auditory brainstem responses (ABRs) and decreased distortion product otoacoustic emissions (DPOAEs).
View Article and Find Full Text PDFSci Transl Med
September 2018
Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
β-Site APP (amyloid precursor protein) cleaving enzyme 1 (BACE1) is the β-secretase enzyme that initiates production of the toxic amyloid-β peptide that accumulates in the brains of patients with Alzheimer's disease (AD). Hence, BACE1 is a prime therapeutic target, and several BACE1 inhibitor drugs are currently being tested in clinical trials for AD. However, the safety of BACE1 inhibition is unclear.
View Article and Find Full Text PDFStem Cell Reports
July 2017
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA. Electronic address:
BACE1 is validated as Alzheimer's β-secretase and a therapeutic target for Alzheimer's disease. In examining BACE1-null mice, we discovered that BACE1 deficiency develops abnormal clusters of immature neurons, forming doublecortin-positive neuroblasts, in the developing dentate gyrus, mainly in the subpial zone (SPZ). Such clusters were rarely observed in wild-type SPZ and not reported in other mouse models.
View Article and Find Full Text PDFGlia
May 2017
Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195.
BACE1 is an indispensable enzyme for generating β-amyloid peptides, which are excessively accumulated in brains of Alzheimer's patients. However, BACE1 is also required for proper myelination of peripheral nerves, as BACE1-null mice display hypomyelination. To determine the precise effects of BACE1 on myelination, here we have uncovered a role of BACE1 in the control of Schwann cell proliferation during development.
View Article and Find Full Text PDF