Publications by authors named "Doo Yeon Kim"

Cellular cross-talk, mediated by membrane receptors and their ligands, is crucial for brain homeostasis and can contribute to neurodegenerative diseases such as Alzheimer's disease (AD). To find cross-talk dysregulations involved in AD, we reconstructed cross-talk networks from single-nucleus transcriptional profiles of 67 clinically and neuropathologically well-characterized controls and AD brain donors from the Knight Alzheimer Disease Research Center and the Dominantly Inherited Alzheimer Network cohorts. We predicted a role for TREM2 and additional AD risk genes mediating neuron-microglia cross-talk in AD.

View Article and Find Full Text PDF

Long-term preservation of fully differentiated human neurons poses a longstanding challenge in neuroscience research. Numerous cellular disease models have been established using cultured human neuronal cells, including our three-dimensional (3D) human neural cell culture model of Alzheimer's disease (AD). However, the absence of a reliable method for preserving fully differentiated human neural cell cultures for a long time has hindered the sharing and standardization of these models.

View Article and Find Full Text PDF

Background: A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) poses significant treatment challenges, particularly targeting amyloid-β (Aβ), but a new analysis method uncovered 83 dysfunctional pathways relevant to AD in both human brains and lab models.
  • The p38 MAPK pathway was notably upregulated and linked to tau pathology and neuronal damage, highlighting its potential as a therapeutic target.
  • By using integrative pathway activity analysis (IPAA), researchers can combine human data with cellular models to efficiently identify promising drug targets for AD treatment.*
View Article and Find Full Text PDF

The tauopathies are defined by pathological tau protein aggregates within a spectrum of clinically heterogeneous neurodegenerative diseases. The primary tauopathies meet the definition of rare diseases in the United States. There is no approved treatment for primary tauopathies.

View Article and Find Full Text PDF

The disruption of the blood-brain barrier (BBB) in Alzheimer's Disease (AD) is largely influenced by amyloid beta (Aβ). In this study, we developed a high-throughput microfluidic BBB model devoid of a physical membrane, featuring endothelial cells interacting with an extracellular matrix (ECM). This paper focuses on the impact of varying concentrations of Aβ oligomers on BBB dysfunction by treating them in the luminal.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is characterized by the buildup of amyloid-β (Aβ) proteins in the brain, which is linked to cognitive decline.
  • Physical exercise can help reduce Aβ levels, and a hormone called irisin, released during exercise, has been found to enhance the release of an enzyme (neprilysin) that breaks down Aβ in astrocytes.
  • The study identified integrin αV/β5 as the receptor for irisin on astrocytes, highlighting a potential new pathway for developing therapies to combat Alzheimer’s disease.
View Article and Find Full Text PDF

Brain infiltration of peripheral immune cells and their interactions with brain-resident cells may contribute to Alzheimer's disease (AD) pathology. To examine these interactions, in the present study we developed a three-dimensional human neuroimmune axis model comprising stem cell-derived neurons, astrocytes and microglia, together with peripheral immune cells. We observed an increase in the number of T cells (but not B cells) and monocytes selectively infiltrating into AD relative to control cultures.

View Article and Find Full Text PDF

Therapeutics discovery and development for Alzheimer's disease (AD) has been an area of intense research to alleviate memory loss and the underlying pathogenic processes. Recent drug discovery approaches have utilized computational strategies for drug candidate selection which has opened the door to repurposing drugs for AD. Computational analysis of gene expression signatures of patients stratified by the APOE4 risk allele of AD led to the discovery of the FDA-approved drug bumetanide as a top candidate agent that reverses APOE4 transcriptomic brain signatures and improves memory deficits in APOE4 animal models of AD.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers utilized mass spectrometry to analyze cerebrospinal fluid and plasma from both A673T carriers and non-carriers, revealing significant decreases in soluble APPβ and amyloid beta levels in carriers.
  • * In cell culture studies, the A673T variant showed the potential to lower harmful proteins associated with Alzheimer's, suggesting its important role in mitigating AD-related pathology.
View Article and Find Full Text PDF

Creating a cellular model of Alzheimer's disease (AD) that accurately recapitulates disease pathology has been a longstanding challenge. Recent studies showed that human AD neural cells, integrated into three-dimensional (3D) hydrogel matrix, display key features of AD neuropathology. Like in the human brain, the extracellular matrix (ECM) plays a critical role in determining the rate of neuropathogenesis in hydrogel-based 3D cellular models.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common cause of dementia in the elderly, clinically defined by progressive cognitive decline and pathologically, by brain atrophy, neuroinflammation, and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles. Neurotechnological approaches, including optogenetics and deep brain stimulation, have exploded as new tools for not only the study of the brain but also for application in the treatment of neurological diseases. Here, we review the current state of AD therapeutics and recent advancements in both invasive and non-invasive neurotechnologies that can be used to ameliorate AD pathology, including neurostimulation via optogenetics, photobiomodulation, electrical stimulation, ultrasound stimulation, and magnetic neurostimulation, as well as nanotechnologies employing nanovectors, magnetic nanoparticles, and quantum dots.

View Article and Find Full Text PDF
Article Synopsis
  • Brain spheroids are becoming essential models for studying diseases like Alzheimer's by using genetically modified human neural cells and advanced cell culture techniques.
  • Despite progress, there's still difficulty in understanding how Alzheimer's disease develops and how harmful proteins spread between healthy and diseased neurons using these models.
  • To overcome this challenge, a new microfluidic system was created to arrange different brain spheroids in specific patterns, allowing for better communication and interaction between them, including the buildup of harmful amyloid-β proteins.
View Article and Find Full Text PDF
Article Synopsis
  • Study highlights the role of reactive astrocytes in Alzheimer's disease (AD) using a new animal model called GiD, which allows manipulation of astrocyte reactivity levels.
  • Severe reactive astrocytes produce excessive hydrogen peroxide, leading to neurodegeneration and cognitive decline, while moderate reactivity does not have this effect.
  • AAD-2004, a hydrogen peroxide scavenger, shows potential in preventing the harmful outcomes associated with severe astrocytic reactivity in AD, suggesting a potential therapeutic pathway.
View Article and Find Full Text PDF

The incidence of Alzheimer's disease is increasing with the aging population, and it has become one of the main health concerns of modern society. The dissection of the underlying pathogenic mechanisms and the development of effective therapies remain extremely challenging, also because available animal and cell culture models do not fully recapitulate the whole spectrum of pathological changes. The advent of human pluripotent stem cells and cell reprogramming has provided new prospects for tackling these challenges in a human and even patient-specific setting.

View Article and Find Full Text PDF

The relationship between amyloid-β (Aβ) species and tau pathology in Alzheimer's disease (AD) is not fully understood. Here, we provide direct evidence that Aβ42/40 ratio, not total Aβ level, plays a critical role in inducing neurofibrillary tangles (NTFs) in human neurons. Using 3D-differentiated clonal human neural progenitor cells (hNPCs) expressing varying levels of amyloid β precursor protein (APP) and presenilin 1 (PS1) with AD mutations, we show that pathogenic tau accumulation and aggregation are tightly correlated with Aβ42/40 ratio.

View Article and Find Full Text PDF

Harmful materials in the blood are prevented from entering the healthy brain by a highly selective blood-brain barrier (BBB), and impairment of barrier function has been associated with a variety of neurological diseases. In Alzheimer's disease (AD), BBB breakdown has been shown to occur even before cognitive decline and brain pathology. To investigate the role of the cerebral vasculature in AD, a physiologically relevant 3D human neural cell culture microfluidic model is developed having a brain endothelial cell monolayer with a BBB-like phenotype.

View Article and Find Full Text PDF

The mechanisms of mitochondrial dysfunction in Alzheimer's disease are incompletely understood. Using two-photon fluorescence lifetime microscopy of the coenzymes, NADH and NADPH, and tracking brain oxygen metabolism with multi-parametric photoacoustic microscopy, we show that activation of lysosomal mechanistic target of rapamycin complex 1 (mTORC1) by insulin or amino acids stimulates mitochondrial activity and regulates mitochondrial DNA synthesis in neurons. Amyloid-β oligomers, which are precursors of amyloid plaques in Alzheimer's disease brain and stimulate mTORC1 protein kinase activity at the plasma membrane but not at lysosomes, block this Nutrient-induced Mitochondrial Activity (NiMA) by a mechanism dependent on tau, which forms neurofibrillary tangles in Alzheimer's disease brain.

View Article and Find Full Text PDF

Adult hippocampal neurogenesis (AHN) is impaired before the onset of Alzheimer's disease (AD) pathology. We found that exercise provided cognitive benefit to 5×FAD mice, a mouse model of AD, by inducing AHN and elevating levels of brain-derived neurotrophic factor (BDNF). Neither stimulation of AHN alone, nor exercise, in the absence of increased AHN, ameliorated cognition.

View Article and Find Full Text PDF

β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is required for the production of β-amyloid (Aβ), one of the major pathogenic molecules of Alzheimer's disease (AD), and is therefore being actively pursued as a drug target for AD. Adult hippocampal neurogenesis (AHN) is a lifelong process that is known to be important for learning and memory and may have the potential to regenerate damaged neural tissue. In this study, we examined whether BACE1 regulates AHN, which holds important implications for its suitability as a drug target in AD.

View Article and Find Full Text PDF

The microfluidic 3D cell culture system has been an attractive model because it mimics the tissue and disease model, thereby expanding our ability to control the local cellular microenvironment. However, these systems still have limited value as quantitative assay tools due to the difficulties associated with the manipulation and maintenance of microfluidic cells, and their lack of compatibility with the high-throughput screening (HTS) analysis system. In this study, we suggest a microchannel-free, 3D cell culture system that has a hydrogel-incorporating unit integrated with a multi-well plate (24- to 96-well plate), which can provide better reproducibility in biological experiments.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by beta-amyloid accumulation, phosphorylated tau formation, hyperactivation of glial cells, and neuronal loss. The mechanisms of AD pathogenesis, however, remain poorly understood, partially due to the lack of relevant models that can comprehensively recapitulate multistage intercellular interactions in human AD brains. Here we present a new three-dimensional (3D) human AD triculture model using neurons, astrocytes, and microglia in a 3D microfluidic platform.

View Article and Find Full Text PDF

Neurospheroids are commonly used for in vitro disease modeling and drug screening. However, the heterogeneity in size of the neurospheroids mixtures available through current methods limits their utility when employed for basic mechanistic studies of neurodegenerative diseases or screening for new interventions. Here, we generate neurospheroids from immortalized neural progenitor cells and human induced pluripotent stem cells that are uniform in size, into large-scale arrays.

View Article and Find Full Text PDF

Objective: Mutations in ABCD1 cause the neurodegenerative disease, adrenoleukodystrophy, which manifests as the spinal cord axonopathy adrenomyeloneuropathy (AMN) in nearly all males surviving into adulthood. Microglial dysfunction has long been implicated in pathogenesis of brain disease, but its role in the spinal cord is unclear.

Methods: We assessed spinal cord microglia in humans and mice with AMN and investigated the role of ABCD1 in microglial activity toward neuronal phagocytosis in cell culture.

View Article and Find Full Text PDF

Deciphering the human brain pathophysiology remains one of the greatest challenges of the 21 century. Neurological disorders represent a significant proportion of diseases burden; however, the complexity of the brain physiology makes it challenging to model its diseases. Simple in vitro models have been very useful for precise measurements in controled conditions.

View Article and Find Full Text PDF