98%
921
2 minutes
20
The up-regulation of α4β2* nicotinic acetylcholine receptors (nAChRs) by chronic nicotine is a cell-delimited process and may be necessary and sufficient for the initial events of nicotine dependence. Clinical literature documents an inverse relationship between a person's history of tobacco use and his or her susceptibility to Parkinson's disease; this may also result from up-regulation. This study visualizes and quantifies the subcellular mechanisms involved in nicotine-induced nAChR up-regulation by using transfected fluorescent protein (FP)-tagged α4 nAChR subunits and an FP-tagged Sec24D endoplasmic reticulum (ER) exit site marker. Total internal reflection fluorescence microscopy shows that nicotine (0.1 µM for 48 h) up-regulates α4β2 nAChRs at the plasma membrane (PM), despite increasing the fraction of α4β2 nAChRs that remain in near-PM ER. Pixel-resolved normalized Förster resonance energy transfer microscopy between α4-FP subunits shows that nicotine stabilizes the (α4)(2)(β2)(3) stoichiometry before the nAChRs reach the trans-Golgi apparatus. Nicotine also induces the formation of additional ER exit sites (ERES). To aid in the mechanistic analysis of these phenomena, we generated a β2(enhanced-ER-export) mutant subunit that mimics two regions of the β4 subunit sequence: the presence of an ER export motif and the absence of an ER retention/retrieval motif. The α4β2(enhanced-ER-export) nAChR resembles nicotine-exposed nAChRs with regard to stoichiometry, intracellular mobility, ERES enhancement, and PM localization. Nicotine produces only small additional PM up-regulation of α4β2(enhanced-ER-export) receptors. The experimental data are simulated with a model incorporating two mechanisms: (1) nicotine acts as a stabilizing pharmacological chaperone for nascent α4β2 nAChRs in the ER, eventually increasing PM receptors despite a bottleneck(s) in ER export; and (2) removal of the bottleneck (e.g., by expression of the β2(enhanced-ER-export) subunit) is sufficient to increase PM nAChR numbers, even without nicotine. The data also suggest that pharmacological chaperoning of nAChRs by nicotine can alter the physiology of ER processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010053 | PMC |
http://dx.doi.org/10.1085/jgp.201010532 | DOI Listing |
Nat Prod Res
March 2025
Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Safat, Kuwait.
The effects of apigenin, a plant flavonoid, were investigated using the two-electrode voltage-clamp technique on the function of the cloned α7 subunit of the human nicotinic acetylcholine (α7-nACh) receptor expressed in oocytes. Currents induced by ACh (100 μM) were reversibly potentiated by apigenin with an EC value of 5.4 µM in a voltage-independent manner.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Corteva Agriscience, Indianapolis, IN 46268, USA; Retired - Present address Agrilucent LLC, Morro Bay, CA 93442, USA.
Since their registration more than 25 years ago, the spinosyns have become a significant insect management tool in farmers' battles to protect crop quality and yield. Spinosad (Qalcova™ active) and spinetoram (Jemvelva™ active), the two members of the Insecticide Resistance Action Committee (IRAC) Group 5 nicotinic acetylcholine receptor (nAChR) allosteric modulators Site I, class of insecticides, have proven highly effective at controlling chewing insect pests on over 250 different crops. Their importance as an integral rotation partner in insect pest management programs has stimulated a large body of research into their mode of action (MoA) and mechanisms of resistance.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil. Electronic address:
Managing Euschistus heros is increasingly challenging due to insecticide resistance, limited available molecules, and environmental and health concerns. Here, we synthesized and evaluated mucochloric acid derivatives as alternative tools for controlling this pest. We assessed the selectivity of these molecules toward the pollinators bees Apis mellifera and Partamona helleri and conducted in silico predictions for the interactions of these molecules with receptors for γ-aminobutyric acid (GABARs) and nicotinic acetylcholine receptors (nAChRs), and the enzyme acetylcholinesterases (AChE) of E.
View Article and Find Full Text PDFPLoS One
September 2025
Center for Hypothalamic Research and Department of Internal Medicine, UT Southwestern Medical Center, Harry Hines blvd, Dallas, Texas, Unites States of America.
The anti-inflammatory cholinergic pathway describes the interaction between cholinergic vagal nerves and splenic immune cells, yet the exact mechanisms underlying the anti-inflammatory cholinergic pathway remain disputed. Here, we mapped the expression of key molecular components of the anti-inflammatory cholinergic pathway in the adult mouse using RNAScope in situ hybridization (ISH) and quantitative PCR (qPCR). In C57BL/6J wild-type male mice, we observed the expression of choline acetyltransferase (Chat) and alpha 7 nicotinic acetylcholine receptor (Chrna7) in various autonomic neurons throughout the body, but not in the spleen, even after bacterial lipopolysaccharide (LPS) treatment.
View Article and Find Full Text PDFBiology (Basel)
August 2025
College of Animal Science and Technology, Yangzhou University, 88 South University Rd, Yangzhou 225009, China.
Honeybees () are indispensable pollinators vital to global biodiversity, ecosystem stability, and agricultural productivity, and they promote over 35% of food crops and 75% of flowering plants. Yet, they are in unprecedented decline, partly as a result of neonicotinoid pesticide use elsewhere. These effects on honey bee health are synthesized in this paper through molecular, physiological, and behavioral data showing that sublethal effects of neonicotinoids impair honey bee health.
View Article and Find Full Text PDF