98%
921
2 minutes
20
Background: A combined protocol of voxel-based morphometry (VBM) and diffusion-weighted imaging (DWI) was applied to investigate the neurodevelopment of gray and white matter in autism.
Methods: Twenty children with autism (mean age= 7 ± 2.75 years old; age range: 4-14; 2 girls) and 22 matched normally developing children (mean age = 7.68 ± 2.03 years old; age range: 4-11; 2 girls) underwent magnetic resonance imaging (MRI). VBM was employed by applying the Template-o-Matic toolbox (TOM), a new approach which constructs the age-matched customized template for tissue segmentation. Also, the apparent diffusion coefficients (ADC) of water molecules were obtained from the analysis of DWI. Regions of interests (ROIs), standardized at 5 pixels, were placed in cortical lobes and corpus callosum on the non-diffusion weighted echo-planar images (b = 0) and were then automatically transferred to the corresponding maps to obtain the ADC values.
Results: Compared to normal children, individuals with autism had significantly: (1) increased white matter volumes in the right inferior frontal gyrus, the right fusiform gyrus, the left precentral and supplementary motor area and the left hippocampus, (2) increased gray matter volumes in the inferior temporal gyri bilaterally, the right inferior parietal cortex, the right superior occipital lobe and the left superior parietal lobule, and (3) decreased gray matter volumes in the right inferior frontal gyrus and the left supplementary motor area. Abnormally increased ADC values in the bilateral frontal cortex and in the left side of the genu of the corpus callosum were also reported in autism. Finally, age correlated negatively with lobar and callosal ADC measurements in individuals with autism, but not in children with normal development.
Conclusions: These findings suggest cerebral dysconnectivity in the early phases of autism coupled with an altered white matter maturation trajectory during childhood potentially taking place in the frontal and parietal lobes, which may represent a neurodevelopmental marker of the disorder, possibly accounting for the cognitive and social deficits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2010.12.002 | DOI Listing |
J Proteome Res
September 2025
Department of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Street, 30-663 Krakow, Poland.
Premature infants are at high risk for brain injuries such as intraventricular hemorrhage and periventricular white matter injury. This study applies omics technology to analyze urinary protein expression, aiming to clarify preterm brain injury mechanisms and identify therapeutic targets. Urine samples were collected from 29 very preterm infants (VPI) without brain injury and 11 with moderate/severe injury at eight time points: Days 1, 2, 3, 4, 6, 8, 28, and term-equivalent age (TEA).
View Article and Find Full Text PDFCuad Bioet
September 2025
Facultad de Farmacia y Nutrición de la Universidad de Navarra, Irunlarrea, 1, 31008 Pamplona.
In recent years, there has been a significant increase in minors with gender dysphoria (GD) seeking transition treatments, including puberty blockers and cross-sex hormones. The developing child's brain exhibits structural and functional differences in children with GD compared to cisgender children, particularly in areas where sex differences exist. Brain development during childhood and adolescence is strongly influenced by sex hormones.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
September 2025
Department of Physics of Condensed Matter, Optics Area. Vision Research Group (CIVIUS), University of Seville, Avenida de la Reina Mercedes s/n (41012), Seville, Spain.
Purpose: To analyze the relationship between various visual function parameters (refractive status, visual acuity and contrast sensitivity) and macular pigment optical density (MPOD) values, as well as dietary intake of lutein and zeaxanthin in a pediatric population.
Methods: Thirty-six healthy White pediatric patients participated in this cross-sectional study conducted at the Optometry Clinic (Faculty of Pharmacy, Seville, Spain). MPOD values were measured using the MPSII (Macular Pigment Screener II).
Neurol Res
September 2025
Department of Human Anatomy, Wannan Medical College, Wuhu, China.
Background: Ischemic stroke can damage the cerebral white matter, resulting in myelin loss and neurological deficits. Moreover, microglial activation plays an important role in ischemic stroke; therefore, inhibiting microglial activation has become an effective therapeutic target for ischemic stroke.
Objective: This study aimed to investigate the effects of electroacupuncture (EA) on microglial activation and polarization, and the role of oligodendrocyte genesis in myelin reformation after ischemic stroke.
Exp Neurol
September 2025
Division of Pharmacology and Pharmacotherapy, Drug Research Programme, Faculty of Pharmacy, University of Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland. Electronic address:
Traumatic brain injury (TBI) impacts up to 60 million people annually. Both severe TBIs and repeated mild TBIs (rmTBIs) can lead to persistent symptoms such as cognitive deficits, and even neurodegenerative diseases like chronic traumatic encephalopathy (CTE). To date, no therapies exist to mitigate the risk of CTE or other chronic symptoms post-TBI.
View Article and Find Full Text PDF