Novel hierarchical urchin-like hollow SnO2 nanostructures with enhanced gas sensing performance.

J Nanosci Nanotechnol

Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

Published: October 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Novel hierarchical urchin-like hollow SnO2 nanostructures have been synthesized via a facile one-pot template-free hydrothermal approach. The size and density of the SnO2 prickles as well as the morphology of the SnO2 spheres can be modified by tuning the synthetic parameters such as temperature, time, concentration, as well as pH value. The novel hierarchical nano-sized SnO2 hollow urchins possess enriched prickles with diameters of 5-20 nm and lengths of < 70 nm and high surface area up to 116 m2 g(-1), exhibiting advanced sensing performance to the ethanol vapor due to the special hierarchical nanostructures and being promising for the potential gas sensor material.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2010.2551DOI Listing

Publication Analysis

Top Keywords

novel hierarchical
12
hierarchical urchin-like
8
urchin-like hollow
8
hollow sno2
8
sno2 nanostructures
8
sensing performance
8
sno2
5
nanostructures enhanced
4
enhanced gas
4
gas sensing
4

Similar Publications

Two-Step Semi-Automated Classification of Choroidal Metastases on MRI: Orbit Localization via Bounding Boxes Followed by Binary Classification via Evolutionary Strategies.

AJNR Am J Neuroradiol

September 2025

From the Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America (J.S.S., B.M., S.H., A.H., J.S.), and Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (H.S.).

Background And Purpose: The choroid of the eye is a rare site for metastatic tumor spread, and as small lesions on the periphery of brain MRI studies, these choroidal metastases are often missed. To improve their detection, we aimed to use artificial intelligence to distinguish between brain MRI scans containing normal orbits and choroidal metastases.

Materials And Methods: We present a novel hierarchical deep learning framework for sequential cropping and classification on brain MRI images to detect choroidal metastases.

View Article and Find Full Text PDF

AI-informed retinal biomarkers predict 10-year risk of onset of multiple hematological malignancies.

Eur J Cancer

August 2025

Emory University, Atlanta, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Atlanta Veterans Administration Medical Center, Atlanta, USA. Electronic address:

Background: Early detection of hematological malignancies improves long-term survival but remains a critical challenge due to heterogeneity in clinical presentation. Chronic inflammation is a key driver in hematologic cancers and is known to induce compensatory microvascular changes. High-resolution, non-invasive retinal imaging can allow the quantification of microvascular changes for the early detection of hematological malignancies.

View Article and Find Full Text PDF

Assessment of industrial fault diagnosis using rough approximations of fuzzy hypersoft sets.

PLoS One

September 2025

Department of Maths and Computer Science, Faculty of Science, University of Kinshasa, Kinshasa, The Democratic Republic of the Congo.

Reliable and timely fault diagnosis is critical for the safe and efficient operation of industrial systems. However, conventional diagnostic methods often struggle to handle uncertainties, vague data, and interdependent multi-criteria parameters, which can lead to incomplete or inaccurate results. Existing techniques are limited in their ability to manage hierarchical decision structures and overlapping information under real-world conditions.

View Article and Find Full Text PDF

Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.

View Article and Find Full Text PDF

Genomes are composed of a mosaic of segments inherited from different ancestors, each separated by past recombination events. Consequently, genealogical relationships among multiple genomes vary spatially across different genomic regions. Genealogical variation among unlinked (uncorrelated) genomic regions is well described for either a single population (coalescent) or multiple structured populations (multispecies coalescent).

View Article and Find Full Text PDF