Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an octameric enzyme composed of four heterodimers of regulatory IDH1 and catalytic IDH2 subunits. The crystal structure suggested that the interactions between tetramers in the octamer are restricted to defined regions in IDH1 subunits from each tetramer. Using truncation and mutagenesis, we constructed three tetrameric forms of IDH. Truncation of five residues from the amino terminus of IDH1 did not alter the octameric form of the enzyme, but this truncation with an IDH1 G15D or IDH1 D168K residue substitution produced tetrameric enzymes as assessed by sedimentation velocity ultracentrifugation. The IDH1 G15D substitution in the absence of any truncation of IDH1 was subsequently found to be sufficient for production of a tetrameric enzyme. The tetrameric forms of IDH exhibited ∼50% reductions in V(max) and in cooperativity with respect to isocitrate relative to those of the wild-type enzyme, but they retained the property of allosteric activation by AMP. The truncated (-5)IDH1/IDH2 and tetrameric enzymes were much more sensitive than the wild-type enzyme to inhibition by the oxidant diamide and concomitant formation of a disulfide bond between IDH2 Cys-150 residues. Binding of ligands reduced the sensitivity of the wild-type enzyme to diamide but had no effect on inhibition of the truncated or tetrameric enzymes. These results suggest that the octameric structure of IDH has in part evolved for regulation of disulfide bond formation and activity by ensuring the proximity of the amino terminus of an IDH1 subunit of one tetramer to the IDH2 Cys-150 residues in the other tetramer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137751PMC
http://dx.doi.org/10.1021/bi101401hDOI Listing

Publication Analysis

Top Keywords

tetrameric forms
12
tetrameric enzymes
12
wild-type enzyme
12
yeast nad+-specific
8
nad+-specific isocitrate
8
isocitrate dehydrogenase
8
idh1
8
forms idh
8
amino terminus
8
terminus idh1
8

Similar Publications

The detection of biological nanoparticles (NPs), such as viruses and extracellular vesicles (EVs), plays a critical role in medical diagnostics. However, these particles are optically faint, making microscopic detection in complex solutions challenging. Recent advancements have demonstrated that distinguishing between metallic and dielectric signals with twilight off-axis holographic microscopy makes it possible to differentiate between metal and biological NPs and to quantify complexes formed from metal and biological NPs binding together.

View Article and Find Full Text PDF

ssDNA and ssRNA Promote Phase Condensation of SAMHD1.

Biochemistry

September 2025

Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States.

SAMHD1 (SAM domain and HD domain-containing protein 1) is a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) with functions in viral restriction, R-loop resolution, DNA repair, telomere maintenance, ssRNA homeostasis, and regulation of self-nucleic acids. As a dNTPase, SAMHD1 functions as an allosterically activated tetramer, where binding of GTP to the A1 activator site of each monomer initiates dNTP-dependent tetramerization. cEM structures reveal that the nucleic-acid-related functions of SAMHD1 involve binding of guanine residues to the A1 site, leading to oligomeric forms that appear as beads-on-a-string on single-stranded RNA and DNA.

View Article and Find Full Text PDF

Background: Myalgic encephalomyelitis (ME) is a chronic, multisystem illness characterized by post-exertional malaise (PEM) and cognitive dysfunction, yet the molecular mechanisms driving these hallmark symptoms remain unclear. This study investigated haptoglobin (Hp) as a potential biomarker of PEM severity and cognitive impairment in ME, with a focus on Hp phenotypes and structural proteoforms.

Methods: A longitudinal case-control study was conducted in 140 ME patients and 44 matched sedentary healthy controls.

View Article and Find Full Text PDF

Structural Basis for Tetramerization of -Acetylglucosamine-6-Phosphate Deacetylase.

J Microbiol Biotechnol

August 2025

College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.

N-acetylglucosamine-6-phosphate deacetylase (NagA) is a conserved enzyme involved in bacterial amino sugar metabolism, catalyzing the conversion of GlcNAc-6-phosphate to GlcN-6-phosphate and acetate. While NagA typically function as dimers, its quaternary diversity across species remains underexplored. Here, we present the crystal structure of (kpNagA), which forms a homotetrameric assembly both in crystal and in solution, as confirmed by SEC-MALS.

View Article and Find Full Text PDF

The Cus17 phloem protein, in the case of species, plays an important role in the phloem-based defense of the plant. Cus17 can bind to various carbohydrates present on insect exoskeletons or fungal cells. The recent experimental structure of chitotriose bound Cus17 elucidates the carbohydrate interacting residues of Cus17.

View Article and Find Full Text PDF