Publications by authors named "An-Ping Lin"

Targeting metabolic dependencies and "starving" malignant cells have long been considered as potential strategies to treat cancer. However, with rare exceptions, the implementation of these maneuvers has been fraught with limited activity and lack of specificity. Multiple cytoplasmic and mitochondrial transaminases catalyze reactions that lead to amino acid catabolism.

View Article and Find Full Text PDF

The mechanism by which interferon regulatory factor 8 (IRF8) mutation contributes to lymphomagenesis is unknown. We modeled IRF8 variants in B cell lymphomas and found that they affected the expression of regulators of antigen presentation. Expression of IRF8 mutants in murine B cell lymphomas suppressed CD4, but not CD8, activation elicited by antigen presentation and downmodulated CD74 and human leukocyte antigen (HLA) DM, intracellular regulators of antigen peptide processing/loading in the major histocompatibility complex (MHC) II.

View Article and Find Full Text PDF

In diffuse large B-cell lymphoma (DLBCL), the transcription factor IRF8 is the target of a series of potentially oncogenic events, including, chromosomal translocation, focal amplification, and super-enhancer perturbations. IRF8 is also frequently mutant in DLBCL, but how these variants contribute to lymphomagenesis is unknown. We modeled IRF8 mutations in DLBCL and found that they did not meaningfully impact cell fitness.

View Article and Find Full Text PDF

Angiogenesis and MYC expression associate with poor outcome in diffuse large B-cell lymphoma (DLBCL). MYC promotes neo-vasculature development but whether its deregulation in DLBCL contributes to angiogenesis is unclear. Examination of this relationship may uncover novel pathogenic regulatory circuitry as well as anti-angiogenic strategies in DLBCL.

View Article and Find Full Text PDF

Mitochondria can function as signaling organelles, and part of this output leads to epigenetic remodeling. The full extent of this far-reaching interplay remains undefined. Here, we show that MYC transcriptionally activates IDH2 and increases alpha-ketoglutarate (αKG) levels.

View Article and Find Full Text PDF

Cyclic-AMP (cAMP) exerts suppressive effects in the innate and adaptive immune system. The PD-1/PD-L1 immune checkpoint downregulates T-cell activity. Here, we examined if these two immunosuppressive nodes intersect.

View Article and Find Full Text PDF

In mature B-cell malignancies, chromosomal translocations often juxtapose an oncogenic locus to the regulatory regions of the immunoglobulin genes. These genomic rearrangements can associate with specific clinical/pathological sub-entities and inform diagnosis and treatment decisions. Recently, we characterized the t(14;16)(q32;q24) in diffuse large B-cell lymphoma (DLBCL), and showed that it targets the transcription factor IRF8, which is also somatically mutated in ~10% of DLBCLs.

View Article and Find Full Text PDF

Mitochondrial D2HGDH and L2HGDH catalyze the oxidation of D-2-HG and L-2-HG, respectively, into αKG. This contributes to cellular homeostasis in part by modulating the activity of αKG-dependent dioxygenases. Signals that control the expression/activity of D2HGDH/L2HGDH are presumed to broadly influence physiology and pathology.

View Article and Find Full Text PDF

Aberrant activation of the B-cell receptor (BCR) is implicated in the pathogenesis of mature B-cell tumors, a concept validated in part by the clinical success of inhibitors of the BCR-related kinases BTK (Bruton's tyrosine kinase) and PI3Kδ. These inhibitors have limitations, including the paucity of complete responses, acquired resistance, and toxicity. Here, we examined the mechanism by which the cyclic-AMP/PDE4 signaling axis suppresses PI3K, toward identifying a novel mechanism-based combinatorial strategy to attack BCR-dependency in mature B-cell malignancies.

View Article and Find Full Text PDF

In this study, we aimed to validate our extensive preclinical data on phosphodiesterase 4 (PDE4) as actionable target in B-cell malignancies. Our specific objectives were to determine the safety, pharmacokinetics, and pharmacodynamics (PI3K/AKT activity), as well as to capture any potential antitumor activity of the PDE4 inhibitor roflumilast in combination with prednisone in patients with advanced B-cell malignancies. Single-center, exploratory phase Ib open-label, nonrandomized study.

View Article and Find Full Text PDF

Angiogenesis associates with poor outcome in diffuse large B-cell lymphoma (DLBCL), but the contribution of the lymphoma cells to this process remains unclear. Addressing this knowledge gap may uncover unsuspecting proangiogenic signaling nodes and highlight alternative antiangiogenic therapies. Here, we identify the second messenger cyclic-AMP (cAMP) and the enzyme that terminates its activity, phosphodiesterase 4B (PDE4B), as regulators of B-cell lymphoma angiogenesis.

View Article and Find Full Text PDF

Isocitrate dehydrogenases (IDH) convert isocitrate to alpha-ketoglutarate (α-KG). In cancer, mutant IDH1/2 reduces α-KG to D2-hydroxyglutarate (D2-HG) disrupting α-KG-dependent dioxygenases. However, the physiological relevance of controlling the interconversion of D2-HG into α-KG, mediated by D2-hydroxyglutarate dehydrogenase (D2HGDH), remains obscure.

View Article and Find Full Text PDF

In biological processes, the balance between positive and negative inputs is critical for an effective physiological response and to prevent disease. A case in point is the germinal center (GC) reaction, wherein high mutational and proliferation rates are accompanied by an obligatory suppression of the DNA repair machinery. Understandably, when the GC reaction goes awry, loss of immune cells or lymphoid cancer ensues.

View Article and Find Full Text PDF

The characterization of immunoglobulin heavy chain (IGH) translocations provides information on the diagnosis and guides therapeutic decisions in mature B-cell malignancies while enhancing our understanding of normal and malignant B-cell biology. However, existing methodologies for the detection of IGH translocations are labor intensive, often require viable cells, and are biased toward known IGH fusions. To overcome these limitations, we developed a capture sequencing strategy for the identification of IGH rearrangements at nucleotide level resolution and tested its capabilities as a diagnostic and discovery tool in 78 primary diffuse large B-cell lymphomas (DLBCLs).

View Article and Find Full Text PDF

Constitutive activation of the NF-κB pathway is associated with diffuse large B-cell lymphoma (DLBCL) pathogenesis, but whether microRNA dysfunction can contribute to these events remains unclear. Starting from an integrative screening strategy, we uncovered that the negative NF-κB regulator TNFAIP3 is a direct target of miR-125a and miR-125b, which are commonly gained and/or overexpressed in DLBCL. Ectopic expression of these microRNAs in multiple cell models enhanced K63-linked ubiquitination of proximal signaling complexes and elevated NF-κB activity, leading to aberrant expression of its transcriptional targets and the development of a proproliferative and antiapoptotic phenotype in malignant B cells.

View Article and Find Full Text PDF

Yeast NAD(+)-specific isocitrate dehydrogenase is an allosterically regulated octameric enzyme composed of four heterodimers of a catalytic IDH2 subunit and a regulatory IDH1 subunit. Despite structural predictions that the enzyme would contain eight isocitrate binding sites, four NAD(+) binding sites, and four AMP binding sites, only half of the sites for each ligand can be measured in binding assays. On the basis of a potential interaction between side chains of Cys-150 residues in IDH2 subunits in each tetramer of the enzyme, ligand binding assays of wild-type (IDH1/IDH2) and IDH1/IDH2(C150S) octameric enzymes were conducted in the presence of dithiothreitol.

View Article and Find Full Text PDF

Cellular and mitochondrial metabolite levels were measured in yeast TCA cycle mutants (sdh2Δ or fum1Δ) lacking succinate dehydrogenase or fumarase activities. Cellular levels of succinate relative to parental strain levels were found to be elevated ~8-fold in the sdh2Δ mutant and ~4-fold in the fum1Δ mutant, and there was a preferential increase in mitochondrial levels in these mutant strains. The sdh2Δ and fum1Δ strains also exhibited 3-4-fold increases in expression of Cit2, the cytosolic form of citrate synthase that functions in the glyoxylate pathway.

View Article and Find Full Text PDF

Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an octameric enzyme composed of four heterodimers of regulatory IDH1 and catalytic IDH2 subunits. The crystal structure suggested that the interactions between tetramers in the octamer are restricted to defined regions in IDH1 subunits from each tetramer. Using truncation and mutagenesis, we constructed three tetrameric forms of IDH.

View Article and Find Full Text PDF

The tricarboxylic acid cycle NAD+-specific isocitrate dehydrogenase (IDH) of Saccharomyces cerevisiae is an octameric enzyme composed of four heterodimers of regulatory IDH1 and catalytic IDH2 subunits. Recent structural analyses revealed the close proximity of Cys-150 residues from IDH2 in adjacent heterodimers, and features of the structure for the ligand-free enzyme suggested that formation of a disulfide bond between these residues might stabilize an inactive form of the enzyme. We constructed two mutant forms of IDH, one containing a C150S substitution in IDH2 and the other containing C56S/C242S substitutions in IDH2 leaving Cys-150 as the sole cysteine residue.

View Article and Find Full Text PDF

Yeast mutants lacking mitochondrial NAD(+)-specific isocitrate dehydrogenase (idhDelta) or aconitase (aco1Delta) were found to share several growth phenotypes as well as patterns of specific protein expression that differed from the parental strain. These shared properties of idhDelta and aco1Delta strains were eliminated or moderated by co-disruption of the CIT1 gene encoding mitochondrial citrate synthase. Gas chromatography/mass spectrometry analyses indicated a particularly dramatic increase in cellular citrate levels in idhDelta and aco1Delta strains, whereas citrate levels were substantially lower in idhDeltacit1Delta and aco1Deltacit1Delta strains.

View Article and Find Full Text PDF

Based on allosteric regulatory properties, NAD+-specific isocitrate dehydrogenase (IDH) is believed to control flux through the tricarboxylic acid cycle in vivo. To distinguish growth phenotypes associated with regulatory dysfunction of this enzyme in Saccharomyces cerevisiae, we analyzed strains expressing well defined mutant forms of IDH or a non-allosteric bacterial NAD+-specific isocitrate dehydrogenase (IDHa). As previously reported, expression of mutant forms of IDH with severe catalytic defects but intact regulatory properties produced an inability to grow with acetate as the carbon source and a dramatic increase in the frequency of generation of petite colonies, phenotypes also exhibited by a strain (idh1Deltaidh2Delta) lacking IDH.

View Article and Find Full Text PDF

Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an allosterically regulated tricarboxylic acid cycle enzyme that has been shown to bind specifically and with high affinity to 5'-untranslated regions of yeast mitochondrial mRNAs. The absence of IDH has been shown to result in reduced expression of mitochondrial translation products, leading to the suggestion that this macromolecular interaction may contribute to regulating rates of translation. The interaction with mitochondrial mRNAs also produces a dramatic inhibition of IDH catalytic activity that is specifically alleviated by AMP, the primary allosteric activator of IDH.

View Article and Find Full Text PDF

To compare kinetic properties of homologous isozymes of NADP+-specific isocitrate dehydrogenase, histidine-tagged forms of yeast mitochondrial (IDP1) and cytosolic (IDP2) enzymes were expressed and purified. The isozymes were found to share similar apparent affinities for cofactors. However, with respect to isocitrate, IDP1 had an apparent Km value approximately 7-fold lower than that of IDP2, whereas, with respect to alpha-ketoglutarate, IDP2 had an apparent Km value approximately 10-fold lower than that of IDP1.

View Article and Find Full Text PDF

Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an allosterically regulated octameric enzyme composed of two types of homologous subunits designated IDH1 and IDH2. Based on sequence comparisons and structural models, both subunits are predicted to have adenine nucleotide binding sites. This was tested by alanine replacement of residues in putative sites in each subunit.

View Article and Find Full Text PDF