Publications by authors named "Purushoth Ethiraj"

Targeting metabolic dependencies and "starving" malignant cells have long been considered as potential strategies to treat cancer. However, with rare exceptions, the implementation of these maneuvers has been fraught with limited activity and lack of specificity. Multiple cytoplasmic and mitochondrial transaminases catalyze reactions that lead to amino acid catabolism.

View Article and Find Full Text PDF
Article Synopsis
  • Diffuse large B-cell lymphoma (DLBCL) is a serious type of cancer where the current treatment, R-CHOP, cures only about 60% of patients, prompting the need for improved therapies.
  • Researchers investigated the combination of the FDA-approved PDE4 inhibitor roflumilast with R-CHOP in high-risk, treatment-naïve DLBCL patients, which showed safety and encouraging outcomes, with 70% of patients alive and disease-free at 44 months.
  • Initial results indicate that roflumilast could enhance cancer treatment by inhibiting certain cancer-related signals and may be especially effective for specific high-risk genetic subtypes of DLBCL, suggesting further testing is needed.
View Article and Find Full Text PDF

The mechanism by which interferon regulatory factor 8 (IRF8) mutation contributes to lymphomagenesis is unknown. We modeled IRF8 variants in B cell lymphomas and found that they affected the expression of regulators of antigen presentation. Expression of IRF8 mutants in murine B cell lymphomas suppressed CD4, but not CD8, activation elicited by antigen presentation and downmodulated CD74 and human leukocyte antigen (HLA) DM, intracellular regulators of antigen peptide processing/loading in the major histocompatibility complex (MHC) II.

View Article and Find Full Text PDF

In diffuse large B-cell lymphoma (DLBCL), the transcription factor IRF8 is the target of a series of potentially oncogenic events, including, chromosomal translocation, focal amplification, and super-enhancer perturbations. IRF8 is also frequently mutant in DLBCL, but how these variants contribute to lymphomagenesis is unknown. We modeled IRF8 mutations in DLBCL and found that they did not meaningfully impact cell fitness.

View Article and Find Full Text PDF

The TMEM127 gene encodes a transmembrane protein of poorly known function that is mutated in pheochromocytomas, neural crest-derived tumors of adrenomedullary cells. Here, we report that, at single-nucleus resolution, TMEM127-mutant tumors share precursor cells and transcription regulatory elements with pheochromocytomas carrying mutations of the tyrosine kinase receptor RET. Additionally, TMEM127-mutant pheochromocytomas, human cells, and mouse knockout models of TMEM127 accumulate RET and increase its signaling.

View Article and Find Full Text PDF

The RET kinase receptor is a target of mutations in neural crest tumors, including pheochromocytomas, and of oncogenic fusions in epithelial cancers. We report a RET::GRB2 fusion in a pheochromocytoma in which RET, functioning as the upstream partner, retains its kinase domain but loses critical C-terminal motifs and is fused to GRB2, a physiological RET interacting protein. RET::GRB2 is an oncogenic driver that leads to constitutive, ligand-independent RET signaling; has transforming capability dependent on RET catalytic function; and is sensitive to RET inhibitors.

View Article and Find Full Text PDF

Angiogenesis and MYC expression associate with poor outcome in diffuse large B-cell lymphoma (DLBCL). MYC promotes neo-vasculature development but whether its deregulation in DLBCL contributes to angiogenesis is unclear. Examination of this relationship may uncover novel pathogenic regulatory circuitry as well as anti-angiogenic strategies in DLBCL.

View Article and Find Full Text PDF

Mitochondria can function as signaling organelles, and part of this output leads to epigenetic remodeling. The full extent of this far-reaching interplay remains undefined. Here, we show that MYC transcriptionally activates IDH2 and increases alpha-ketoglutarate (αKG) levels.

View Article and Find Full Text PDF

We have recently demonstrated NFAT activating protein with ITAM motif 1 (NFAM1) signaling increases osteoclast (OCL) formation/bone resorption associated with the Paget's disease of bone, however, the underlying molecular mechanisms of the NFAM1 regulation of OCL differentiation and bone resorption remains unclear. Here, we showed that RANK ligand stimulation enhances NFAM1 expression in preosteoclast cells. Conditioned media collected from RANKL stimulated RAW264.

View Article and Find Full Text PDF

Cyclic-AMP (cAMP) exerts suppressive effects in the innate and adaptive immune system. The PD-1/PD-L1 immune checkpoint downregulates T-cell activity. Here, we examined if these two immunosuppressive nodes intersect.

View Article and Find Full Text PDF

Microgravity (µXg) induces bone loss in astronauts during space missions. Therefore, it is necessary to delineate the underlying mechanisms which leads to bone loss for developing countermeasures. Osteoclasts (OCLs) are multinucleated cells, which resorb bone.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) occurs as a malignancy of the oral cavity. RANK ligand (RANKL) is essential for osteoclast formation/bone resorption. Recently, we showed autoregulation of receptor activator of nuclear factor-κB ligand (RANKL) stimulates OSCC cell proliferation.

View Article and Find Full Text PDF

Microgravity (μXg) experienced by astronauts during space flights causes accelerated bone loss. However, the molecular basis of μXg induced bone loss in space is unclear. Osteoclast (OCL) is the primary bone-resorbing cell.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is the most common malignancy among oral cancers and shows potent activity for local bone invasion. Receptor activator of nuclear factor κB (RANK) ligand (RANKL) is critical for bone-resorbing osteoclast formation. We previously demonstrated that OSCC tumor cells express high levels of RANKL.

View Article and Find Full Text PDF

Context: Alzheimer's disease (AD) is the most common form of dementia affecting the aged population and neuroinflammation is one of the most observed AD pathologies. NF-κB is the central regulator of inflammation and inhibitor κB kinase (IKK) is the converging point in NF-κB activation. Celastrol is a natural triterpene used as a treatment for inflammatory conditions.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the anticancer efficacy of interferon β in combination with low dose of cisplatin on human cervical cancer progression, as well as its principal action mechanism. The combination treatment synergistically potentiated the effect of interferon β on cell growth inhibition and DNA damage on HeLa cells by repressing NF-κB/p-Akt signaling. Synergistic targeting of these pathways has a therapeutic potential.

View Article and Find Full Text PDF

Psoriasis is a chronic inflammatory skin disease characterized by hyper proliferation of keratinocytes. Recent data show that the epidermis thickening in psoriasis may be related to imbalance of homeostasis caused by abnormal apoptotic process. Maintenance of keratinocyte apoptotic process is very important in psoriasis.

View Article and Find Full Text PDF

Conventional chemotherapy fails to cure metastatic hepatoma mainly due to its high hepatotoxicity. Currently, doxorubicin is the most widely used drug against liver cancer either as single agent or in combination with other chemotherapeutics such as cisplatin. It is limited due to their severe toxicity on normal hepatocytes.

View Article and Find Full Text PDF

Cisplatin is one of the most commonly used chemotherapeutic agents for breast cancer treatment. However, its efficacy is greatly limited by its toxic side effects. The present study investigated the synergistic effect of interferon β with cisplatin on MDA MB231 cells.

View Article and Find Full Text PDF