98%
921
2 minutes
20
Objective: Loss-of-function mutations in human hepatocyte nuclear factor 4α (HNF4α) are associated with maturity-onset diabetes of the young and lipid disorders. However, the mechanisms underlying the lipid disorders are poorly understood. In this study, we determined the effect of acute loss or augmentation of hepatic HNF4α function on lipid homeostasis.
Methods And Results: We generated an adenovirus expressing LacZ (Ad-shLacZ) or short hairpin RNA of Hnf4α (Ad-shHnf4α). Tail vain injection of C57BL/6J mice with Ad-shHnf4α reduced hepatic Hnf4α expression and resulted in striking phenotypes, including the development of fatty liver and a >80% decrease in plasma levels of triglycerides, total cholesterol, and high-density lipoprotein cholesterol. These latter changes were associated with reduced hepatic lipogenesis and impaired very-low-density lipoprotein secretion. Deficiency in hepatic Hnf4α did not affect intestinal cholesterol absorption despite decreased expression of genes involved in bile acid synthesis. Consistent with the loss-of-function data, overexpression of Hnf4α induced numerous genes involved in lipid metabolism in isolated primary hepatocytes. Interestingly, many of these HNF4α-regulated genes were not induced in wild-type mice that overexpressed hepatic Hnf4α. Because of selective gene regulation, mice overexpressing hepatic Hnf4α had unchanged plasma triglyceride levels and decreased plasma cholesterol levels.
Conclusions: Loss of hepatic HNF4α results in severe lipid disorder as a result of dysregulation of multiple genes involved in lipid metabolism. In contrast, augmentation of hepatic HNF4α activity lowers plasma cholesterol levels but has no effect on plasma triglyceride levels because of selective gene regulation. Our data indicate that hepatic HNF4α is essential for controlling the basal expression of numerous genes involved in lipid metabolism and is indispensable for maintaining normal lipid homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079249 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.110.217828 | DOI Listing |
Nat Commun
September 2025
Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA.
Individuals with progressive liver failure risk dying without liver transplantation. However, our understanding of why regenerative responses are disrupted in failing livers is limited. Here, we perform multiomic profiling of healthy and diseased human livers using bulk and single-nucleus RNA- and ATAC-seq.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China.
Heart Lung Circ
September 2025
Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia. Electronic address:
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a reach extending beyond the liver to include other metabolic syndrome-related disorders. Cardiovascular disease and type 2 diabetes mellitus are recognised non-communicable disorders and often downstream complications of MASLD and share similar risk factors. However, MASLD has not been afforded parity alongside other cardiometabolic non-communicable disorders, including the cardiovascular-kidney-metabolic (CKM) syndrome.
View Article and Find Full Text PDFTrends Mol Med
September 2025
Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Ferroptosis, a regulated cell death pathway driven by iron-catalyzed lipid peroxidation, has recently been implicated as a major cause of hepatic injury in metabolic dysfunction-associated fatty liver disease (MAFLD). This review highlights how the identification of hyperoxidized peroxiredoxin 3 (PRDX3) as a ferroptosis-specific marker has led to the discovery that ferroptosis contributes to liver injury in MAFLD, and summarizes other emerging evidence connecting ferroptosis to MAFLD pathogenesis. These new findings suggest that dietary fat composition and genetic variants such as PNPLA3(I148M) may affect the progression of MAFLD by regulating cellular sensitivity to ferroptosis.
View Article and Find Full Text PDFNihon Shokakibyo Gakkai Zasshi
September 2025
Department of Pathology, Japanese Red Cross Okayama Hospital.
An 86-year-old woman was under follow-up at the Breast Surgery Department of our hospital for postoperative treatment for right breast cancer. During this period, a 22-mm cystic mass was identified in the pancreatic head. Its size gradually increased, and she was eventually referred to our department.
View Article and Find Full Text PDF