98%
921
2 minutes
20
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951369 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1001131 | DOI Listing |
Microbiol Spectr
September 2025
Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA.
Unlabelled: Zika virus (ZIKV) is the lone member of Flavivirus family known to cause congenital glaucoma following exposure. The molecular mechanisms of ZIKV-induced glaucoma remain elusive, with no known therapeutic modalities. Autophagy plays a dual role in viral infections and glaucoma pathogenesis.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States.
Introduction: Interferon-induced transmembrane proteins (IFITMs) inhibit the entry of diverse enveloped viruses. The spectrum of antiviral activity of IFITMs is largely determined by their subcellular localization. IFITM1 localizes to and primarily blocks viral fusion at the plasma membrane, while IFITM3 prevents viral fusion in late endosomes by accumulating in these compartments.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110.
Despite the clinical significance of many nonenveloped viruses, the molecular mechanisms of their internalization and membrane penetration are not well understood. Rotaviruses (RVs) are nonenveloped double-stranded RNA viruses and the leading cause of severe dehydrating diarrhea in infants and young children. We identified fatty acid 2-hydroxylase (encoded by ) in the fatty acid 2-hydroxylation pathway as a proviral gene that supports RV infection.
View Article and Find Full Text PDFPLoS One
September 2025
Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
Mammalian cells exhibit three autophagy mechanisms: macroautophagy, microautophagy (MIA), and chaperone-mediated autophagy (CMA), each employing unique mechanisms for transporting cellular material to the lysosome for degradation. MIA involves the engulfment of proteins via lysosomes/late endosomes through membrane invagination, while CMA directly imports cytosolic proteins into lysosomes, selectively targeting those harboring the KFERQ pentapeptide motif, helped by the chaperone HSC70. Despite the identification of several genetic markers of these pathways, our understanding of the underlying mechanisms, particularly in MIA and CMA, remains limited.
View Article and Find Full Text PDFCell Chem Biol
August 2025
Division of Neuroscience and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
Endolysosomes are dynamic organelles that undergo movement along the cytoskeleton, fusion, fission, and tubulation during their lifetime. These processes are regulated by complex molecular machineries, including the structurally related hetero-octameric complexes BLOC-1 and BORC. BLOC-1 associates with early endosomes to mediate the biogenesis of lysosome-related organelles (LROs), such as melanosomes and platelet dense bodies.
View Article and Find Full Text PDF