98%
921
2 minutes
20
Auxin is a multifunctional hormone essential for plant development and pattern formation. A nuclear auxin-signaling system controlling auxin-induced gene expression is well established, but cytoplasmic auxin signaling, as in its coordination of cell polarization, is unexplored. We found a cytoplasmic auxin-signaling mechanism that modulates the interdigitated growth of Arabidopsis leaf epidermal pavement cells (PCs), which develop interdigitated lobes and indentations to form a puzzle-piece shape in a two-dimensional plane. PC interdigitation is compromised in leaves deficient in either auxin biosynthesis or its export mediated by PINFORMED 1 localized at the lobe tip. Auxin coordinately activates two Rho GTPases, ROP2 and ROP6, which promote the formation of complementary lobes and indentations, respectively. Activation of these ROPs by auxin occurs within 30 s and depends on AUXIN-BINDING PROTEIN 1. These findings reveal Rho GTPase-based auxin-signaling mechanisms, which modulate the spatial coordination of cell expansion across a field of cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950838 | PMC |
http://dx.doi.org/10.1016/j.cell.2010.09.003 | DOI Listing |
J Exp Bot
April 2020
Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
Pollen tubes rapidly elongate, penetrate, and navigate through multiple female tissues to reach ovules for sperm delivery by utilizing a specialized form of polar growth known as tip growth. This process requires a battery of cellular activities differentially occurring at the apical growing region of the plasma membrane (PM), such as the differential cellular signaling involving calcium (Ca2+), phospholipids, and ROP-type Rho GTPases, fluctuation of ions and pH, exocytosis and endocytosis, and cell wall construction and remodeling. There is an emerging understanding of how at least some of these activities are coordinated and/or interconnected.
View Article and Find Full Text PDFPhys Biol
March 2020
Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada.
A cluster of neural crest cells (NCCs) may chemotax up a shallow external gradient to which a single cell is unresponsive. To explain this intriguing 'group advantage', we propose a chemo-mechanical model based on the signaling proteins Rac1 and RhoA. We represent each cell as a polygon with nodes connected by elastic membranes.
View Article and Find Full Text PDFJ Cell Sci
January 2020
Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
Synaptic transmission between neurons relies on the exact spatial organization of postsynaptic transmitter receptors, which are recruited and positioned by dedicated scaffolding and regulatory proteins. At GABAergic synapses, the regulatory protein collybistin (Cb, also known as ARHGEF9) interacts with small GTPases, cell adhesion proteins and phosphoinositides to recruit the scaffolding protein gephyrin and GABA receptors to nascent synapses. We dissected the interaction of Cb with the small Rho-like GTPase TC10 (also known as RhoQ) and phospholipids.
View Article and Find Full Text PDFMethods Mol Biol
March 2019
Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
Small, monomeric guanine triphosphate hydrolases (GTPases) are ubiquitous cellular integrators of signaling. A signal activates the GTPase, which then binds to an effector molecule to relay a signal inside the cell. The GTPase effector trap flow cytometry assay (G-Trap) utilizes bead-based protein immobilization and dual-color flow cytometry to rapidly and quantitatively measure GTPase activity status in cell or tissue lysates.
View Article and Find Full Text PDFMech Dev
December 2018
Laboratory of Signaling and Development (LSD), Chile; Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Casilla 160-C, Concepción, Chile. Electronic address:
The neural crest (NC) is a transient embryonic cell population that migrates extensively during development. Ric-8A, a guanine nucleotide exchange factor (GEF) for different Gα subunits regulates cranial NC (CNC) cell migration in Xenopus through a mechanism that still remains to be elucidated. To properly migrate, CNC cells establish an axis of polarization and undergo morphological changes to generate protrusions at the leading edge and retraction of the cell rear.
View Article and Find Full Text PDF