98%
921
2 minutes
20
Extracellular ATP induces a rise in the level of cytosolic free calcium ([Ca(2+)](cyt)) in plant cells. To expand our knowledge about the function of extracellular nucleotides in plants, the effects of several nucleotide analogs and pharmacological agents on [Ca(2+)](cyt) changes were studied using transgenic Arabidopsis (Arabidopsis thaliana) expressing aequorin or the fluorescence resonance energy transfer-based Ca(2+) sensor Yellow Cameleon 3.6. Exogenously applied CTP caused elevations in [Ca(2+)](cyt) that displayed distinct time- and dose-dependent kinetics compared with the purine nucleotides ATP and GTP. The inhibitory effects of antagonists of mammalian P2 receptors and calcium influx inhibitors on nucleotide-induced [Ca(2+)](cyt) elevations were distinct between CTP and purine nucleotides. These results suggest that distinct recognition systems may exist for the respective types of nucleotides. Interestingly, a mutant lacking the heterotrimeric G protein Gβ-subunit exhibited a remarkably higher [Ca(2+)](cyt) elevation in response to all tested nucleotides in comparison with the wild type. These data suggest a role for Gβ in negatively regulating extracellular nucleotide signaling and point to an important role for heterotrimeric G proteins in modulating the cellular effects of extracellular nucleotides. The addition of extracellular nucleotides induced multiple temporal [Ca(2+)](cyt) oscillations, which could be localized to specific root cells. The oscillations were attenuated by a vesicle-trafficking inhibitor, indicating that the oscillations likely require ATP release via exocytotic secretion. The results reveal new molecular details concerning extracellular nucleotide signaling in plants and the importance of fine control of extracellular nucleotide levels to mediate specific plant cell responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949047 | PMC |
http://dx.doi.org/10.1104/pp.110.162503 | DOI Listing |
Invest Ophthalmol Vis Sci
September 2025
The University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester, United Kingdom.
Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.
Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.
Biochem Biophys Res Commun
August 2025
Intensive Care Unit, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China. Electronic address:
Background: Coxsackievirus B3 (CVB3) infection is a common cause of myocarditis, and the resulting inflammatory response and cellular damage can lead to severe cardiac dysfunction. Astragaloside IV (AS-IV), a natural compound with anti-inflammatory and antiviral properties, has shown potential therapeutic value in various inflammatory and immune-related diseases. Our study aims to explore the potential effects and underlying mechanisms of AS-IV in CVB3-induced viral myocarditis (VMC).
View Article and Find Full Text PDFInfect Immun
September 2025
Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA.
is a facultative intracellular pathogen that has garnered attention as a potential cancer therapeutic due to its ability to induce robust cell-mediated immunity. To ensure safe clinical administration, deletion of certain genes, such as , has been used to attenuate -based vaccine strains while preserving immunogenicity. Here we explored the potential inclusion of a gene deletion to enhance the development of -based immunotherapy.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Department of Oral Biology, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood-retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD).
View Article and Find Full Text PDFMutat Res Rev Mutat Res
September 2025
Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India. Electronic address:
The success of Assisted Reproductive Technologies (ART), such as IVF and ICSI, relies heavily on the health of the oocyte, with abnormalities in oocyte morphology often leading to ART failure. The zona pellucida (ZP), an extracellular matrix surrounding the oocyte, plays a crucial role in sperm-egg recognition, species-specific fertilization, and protecting the embryo until implantation. This article investigates the impact of single nucleotide polymorphisms (SNPs) in the genes encoding ZP glycoproteins (hZP1, hZP2, hZP3, and hZP4) on fertility.
View Article and Find Full Text PDF