98%
921
2 minutes
20
Here we report on the visible luminescence properties of individual spherical gold particles in solution, obtained by two-photon excited fluorescence correlation spectroscopy and by an original dual Rayleigh-fluorescence method, correlating the Rayleigh scattering and the luminescence fluctuations of the same particle. The results demonstrate that the power needed to observe the two-photon excited visible luminescence depends on the illuminated particle and that the corresponding emission is anisotropic at low power. These observations combined with the evolution of the dynamics of the luminescence with respect to excitation power are interpreted by the presence of unique emissive surface states that are randomly switched off and on by the heat-induced movement of the molecular coating. These characteristics, which remain hidden in macroscopic experiments, have important implications with respect to the potential use of the particles as labels in two-photon imaging in aqueous samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl100737y | DOI Listing |
Vet World
July 2025
Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 010000, Astana, Kazakhstan.
Background And Aim: Bovine babesiosis, caused by , poses significant economic challenges to Kazakhstan's cattle industry. Early and accurate detection is crucial for interrupting transmission cycles, particularly in regions lacking advanced diagnostic infrastructure. This study aimed to develop a rapid lateral flow immunoassay (LFIA) using a recombinant C-terminal fragment of the recombinant rhoptry-associated protein 1 (rRap1) antigen for the serodiagnosis of bovine babesiosis.
View Article and Find Full Text PDFPhotoacoustics
October 2025
Hubei Key Laboratory of Intelligent Wireless Communications, Hubei Engineering Research Center of Intelligent IOT technology, College of Electronics and Information Engineering, South-Central Minzu University, Wuhan 430074, China.
A novel gourd-type photoacoustic cell (GTPAC) has been developed, featuring a highly reflective, polished gold film-coated inner wall that minimizes optical loss and maximizes light utilization efficiency. GTPAC integrates two coupled spherical chambers with a radius ratio 2:3, which is close to the golden ratio. Its unique Gaussian curvature distribution enables multi-directional, disordered light beam reflection without complex optical alignment.
View Article and Find Full Text PDFBiomater Res
September 2025
Laboratory of Medical Imaging, The First People's Hospital of Zhenjiang, Zhenjiang 212001, P. R. China.
Mesoporous metal nanomaterials (MMNs) have gained interest in biomedicine for their unique properties, but their potential is limited by the predominance of spherical shapes and the neglect of morphological effects on biological activity, which hinders the reasonable evaluation of morphology-dependent enzyme-like activities and biological behaviors and its further biomedical applications. It is therefore imperative to find an effective and facile method to design and prepare MMNs with novel, well-defined morphologies. Herein, we fabricated 3 mesoporous platinum nanoenzymes including sphere, rod, and bipyramid topologies [Au@mesoPt sphere, Au@mesoPt rod, and Au@mesoPt bipyramid nanoparticles (NPs), respectively] via a facile atomic layer deposition method using gold NPs (Au NPs) as the templated cores and Pluronic F127 as a structure-directing agent.
View Article and Find Full Text PDFNMR Biomed
October 2025
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
∆B shim optimization performed at the beginning of an MR scan is unable to correct for ∆B field inhomogeneities caused by patient motion or hardware instability during scans. Navigator-based methods have been demonstrated previously to be effective for motion and shim correction. The purpose of this work was to accelerate volumetric navigators to allow fast acquisition of the parent navigated sequence with short real-time feedback time and high spatial resolution of the ∆B field mapping.
View Article and Find Full Text PDFRSC Adv
August 2025
Assistant Professor, Department of Chemistry, School of Applied Sciences & Humanities, Vignan's Foundation for Science, Technology and Research Vadlamudi Guntur India-522213 +91 863 2344777.
We report the synthesis and characterization of thiol-stabilized gold nanoparticles (AuNPs), functionalized with bis(pyrazole)pyridine ligands (L4 and 10), and their subsequent assembly into rectangular nano/microstripes using a lithographically controlled wetting (LCW) technique. The resulting microstructured patterns, with widths of ∼2 μm and heights of 150-200 μm, were employed to simultaneously explore spin crossover (SCO) behavior and surface-enhanced Raman scattering (SERS) properties. Compound 10 exhibited SCO behavior with a molar magnetic susceptibility () of ∼3.
View Article and Find Full Text PDF