Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sample collection procedures of pharmacology and toxicology studies might have a great impact on interpretation of metabolomic study results. Characterization of range variation among sample collection methods is necessary to prevent misinterpretation, as is use of optimal methods in animal experiments to minimize biological/technical variation. Here, we investigated the influence of urine and plasma sample collection and handling procedures on GC-MS based metabolomic studies as follows: for urine, pooling period and tube conditions during collection; for plasma, sampling sites, anesthesia and anticoagulants. Metabolic profiles of urine varied dramatically depending on urine pooling period and tube conditions, underscoring the importance of determining appropriate sampling periods in consideration of diurnal effects and targets of effect/toxicity, and suggesting it would be preferable to keep tubes in metabolic cages under iced conditions for urine sampling. Metabolic profiles of plasma differed depending on blood sampling sites. Anesthesia was not effective in reducing individual variation, although the anesthesia was beneficial in reducing discomfort in rats. In GC-MS based metabolomic studies, we recommend that EDTA be used as anticoagulant in plasma sample preparation, because peaks derived from heparin might overlap with endogenous metabolites, which may induce inter-sample variation. The present study demonstrated that biofluid sample collection and handling procedures provide great impact on metabolic profiles, at the very least for minimizing biological/technical variation, sampling period for urine collection should not be set as a short period, and the use of EDTA is recommended as anticoagulant in preparing plasma for analysis by GC-MS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2010.04.010DOI Listing

Publication Analysis

Top Keywords

sample collection
20
collection handling
12
handling procedures
12
gc-ms based
12
based metabolomic
12
metabolomic studies
12
metabolic profiles
12
biofluid sample
8
procedures gc-ms
8
great impact
8

Similar Publications

A water-soluble NIR-II fluorescent probe for non-invasive real-time detection of blood ATP optoacoustic and fluorescence imaging.

J Mater Chem B

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.

Adenosine triphosphate (ATP) is a critical biomolecule in cellular energy metabolism, with abnormal levels in the bloodstream linked to pathological conditions such as ischemia, cancer, and inflammatory disorders. Accurate and real-time detection of ATP is essential for early diagnosis and disease monitoring. However, conventional biochemical assays and other techniques suffer from limitations, including invasive sample collection, time-consuming procedures, and the inability to provide dynamic, monitoring.

View Article and Find Full Text PDF

On October 17, 2022, the U.S. Food and Drug Administration (FDA) formally established a new category of hearing aids (HAs), now available over the counter (OTC).

View Article and Find Full Text PDF

The purpose of the Client Oriented Scale of Improvement in Tinnitus (COSIT) is to set treatment goals and assess individual outcomes. The Tinnitus Functional Index (TFI) was developed as a comprehensive questionnaire to measure individual and population responses to tinnitus therapies. To investigate the convergent validity and responsiveness of the COSIT and TFI.

View Article and Find Full Text PDF

An 84-year-old man with a history of amputation and follicular lymphoma developed a non-healing ulcer on his stump, initially diagnosed as a pressure ulcer cause by the clinic and lack of B-symptoms. Despite wound care, the lesion worsened. A biopsy revealed de novo diffuse large B-cell lymphoma (DLBCL), non-germinal center subtype.

View Article and Find Full Text PDF

Impact of chorionic villus sampling volume on time to result and pregnancy management.

J Matern Fetal Neonatal Med

December 2025

Section of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.

Objective: To evaluate the association between low-volume chorionic villus sampling (CVS) and delay in patient care.

Methods: This is a retrospective cohort study of patients who underwent CVS from 8/19/2019 to 12/31/2022 in a single center. The exposure was low-volume CVS, defined as less than 15 mg of sample.

View Article and Find Full Text PDF