98%
921
2 minutes
20
The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2010.03.016 | DOI Listing |
Luminescence
September 2025
Department of Physics, Saveetha Engineering College (Autonomous), Chennai, Tamilnadu, India.
The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.
View Article and Find Full Text PDFFront Chem
August 2025
Faculty of Educational Sciences, Al-Ahliyya Amman University, Amman, Jordan.
In this study, a novel hybrid hydrogel incorporating a scandium-based metal-organic framework (scandium-integrated MOF-hydrogel hybrid) was developed using scandium nitrate, 1,4-naphthalenedicarboxylic acid, oxidized pectin, and chitosan. The synthesized scandium-integrated MOF-hydrogel hybrid demonstrated remarkable dual-functionality in both the adsorption of hazardous dye pollutants and the inhibition of pathogenic bacteria commonly found in wastewater. Characterization of the scandium-integrated MOF-hydrogel hybrid was performed using FT-IR, XRD, SEM, EDAX, CHNO elemental, BET, and XPS analyses, confirming successful MOF integration and a porous, reactive surface.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.
Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.
Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.
RSC Adv
September 2025
Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
Bacterial detection is crucial for accurate clinical diagnostics and effective environmental monitoring. Particularly, , a pathogenic bacterium, can cause a wide range of infections, including meningitis, bloodstream infections, pneumonia, urinary tract infections, and wound or surgical site infections. Herein, a polypyrrole (PPy) functionalized TiCT -tin dioxide nanoparticle (SnO NPs) nanocomposite-based hybrid capacitive electrode for the electrochemical detection of ATCC 700603 is developed.
View Article and Find Full Text PDFF1000Res
September 2025
Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, 560054, India.
Background: Chintamani village, Chikkaballapura district, Karnataka, India was found to possess high aquifer uranium concentrations. Geologically, Chintamani village is located on bedrock that is rich in elements like potassium (K) that naturally contain high levels of radioactive elements, such as uranium and thorium, due to the presence of alkali-feldspar granites and gneisses. Aquifer depletion has caused the concentration of these elements in groundwater to increase over time, posing a potential health hazard to the residents of Chintamani village.
View Article and Find Full Text PDF