Optimization of electron donors to improve CO2 fixation efficiency by a non-photosynthetic microbial community under aerobic condition using statistical experimental design.

Bioresour Technol

School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.

Published: September 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To improve the CO(2) fixation efficiency of non-photosynthetic microbial community (NPMC) isolated from sea water under aerobic conditions without hydrogen, the concentration of inorganic compounds as electron donors and their ratios were optimized using response surface methodology design (RSMD). These results indicated that Na(2)S, followed by Na(2)S(2)O(3) and NaNO(2) enhanced the CO(2) fixation by NPMC and the efficiency was increased about 100%, 200% and 200%, respectively. Some interaction between NaNO(2) and Na(2)S(2)O(3), as well as between Na(2)S(2)O(3) and Na(2)S was observed. Central composite RSMD experimentation predicted that the optimal concentration of these inorganic compounds and their ratios was 0.457% NaNO(2), 0.50% Na(2)S(2)O(3) and 1.25% Na(2)S. Under these conditions, the fixed CO(2) was 105.76 mg/L, which obviously exceeded the amount before optimization, as well as that obtained using hydrogen as the electron donor. This indicates that the NPMC using the established electron donors system can effectively fix CO(2) without light and hydrogen gas under aerobic condition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2010.03.138DOI Listing

Publication Analysis

Top Keywords

electron donors
12
co2 fixation
12
improve co2
8
fixation efficiency
8
efficiency non-photosynthetic
8
non-photosynthetic microbial
8
microbial community
8
aerobic condition
8
concentration inorganic
8
inorganic compounds
8

Similar Publications

Unlocking low NO emissions from nitrate-laden wastewater in constructed wetlands: critical role of pyrrhotite substrate layer in mediating nitrate-dependent sulfide oxidation.

Bioresour Technol

September 2025

Research Division for Water Environmental Science and Engineering, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. Electronic address:

Constructed wetlands (CWs) treating nitrate-rich wastewater often face incomplete denitrification and elevated NO emissions due to insufficient electron donors. Pyrrhotite as a CW substrate demonstrated potential for enhancing autotrophic denitrification through coupled sulfur and iron biological oxidation. However, the impact of pyrrhotite layer positioning on regulating NO emissions and underlying mechanisms remains unclear.

View Article and Find Full Text PDF

Sterols are essential isoprenoid derivatives that contribute to membrane structure and function. In plants, they also serve as precursors to phytohormones and specialized metabolites important for development, defense, and health. Although the sterol biosynthetic pathway is considered well-characterized, we report the discovery of a plant-specific cytochrome -like protein, CB5LP, as a critical component of phytosterol biosynthesis.

View Article and Find Full Text PDF

Trifluoromethylborylation of Unactivated Alkenes via an Electron Donor-Acceptor (EDA) Complex.

Org Lett

September 2025

Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States.

This communication describes a straightforward method for the trifluoromethylborylation of unactivated alkenes. The reaction proceeds through the formation of an electron donor-acceptor (EDA) complex between a trifluoromethylthiophenium salt and bis(catechol)diboron under broad-spectrum white-light irradiation. Due to the mild reaction conditions, the trifluoromethylborylation tolerates a wide range of functional groups, including esters, acids, alcohols, epoxides, and a variety of heterocycles.

View Article and Find Full Text PDF

Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.

View Article and Find Full Text PDF

Multi-layered and orthogonal recognition is an excellent route to controlled molecular complexity. Here we report a series of heteroleptic complexes where two ligands pair together at a palladium(II) metal centre in complementary fashion and with orthogonality to others pairs. This complementarity is driven in part through hydrogen-bonding acceptor or donor sites proximal to the coordination domain (either DD:AA or AD:DA).

View Article and Find Full Text PDF