Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a noninvasive optical method to determine the local strain in individual semiconductor nanowires. InP nanowires were intentionally bent with an atomic force microscope and variations in the optical phonon frequency along the wires were mapped using Raman spectroscopy. Sections of the nanowires with a high curvature showed significantly broadened phonon lines. These observations together with deformation potential theory show that compressive and tensile strain inside the nanowires is the physical origin of the observed phonon energy variations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl904040yDOI Listing

Publication Analysis

Top Keywords

semiconductor nanowires
8
raman spectroscopy
8
nanowires
5
probing strain
4
strain bent
4
bent semiconductor
4
nanowires raman
4
spectroscopy noninvasive
4
noninvasive optical
4
optical method
4

Similar Publications

Growth of High Aspect Ratio Wurtzite GaAs Nanowires.

Cryst Growth Des

September 2025

Department of Applied Physics, Eindhoven University of Technology, Groene Loper 19, Eindhoven 5612AP, The Netherlands.

Crystal phase control of III-V semiconductor nanowires grown by the vapor liquid solid mechanism has emerged as a new frontier in nanomaterials in the 2010s. Of particular interest is the ability to grow the metastable wurtzite crystal, which is commercially unavailable in semiconductors such as GaAs and SiGe. The successful growth of wurtzite GaAs nanowires has been demonstrated by precise control of the wetting contact angle of the catalyst particle.

View Article and Find Full Text PDF

Plasmonic biosensor enabled by resonant quantum tunnelling.

Nat Photonics

June 2025

Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Metasurfaces provide an ideal platform for optical sensing because they produce strong light-field confinement and enhancement over extended regions that allow us to identify deep-subwavelength layers of organic and inorganic molecules. However, the requirement of using external light sources involves bulky equipment that hinders point-of-care applications. Here we introduce a plasmonic sensor with an embedded source of light provided by quantum tunnel junctions.

View Article and Find Full Text PDF

Infrared photodetectors are crucial for autonomous driving, providing reliable object detection under challenging lighting conditions. However, conventional silicon-based devices are limited in their responsivity beyond 1100 nm. Here, a scallop-structured silicon photodetector integrated with tin-substituted perovskite quantum dots (PQDs) that effectively extends infrared detection is demonstrated.

View Article and Find Full Text PDF

Rational design of an ultra-high-gain MoS phototransistor enabling room-temperature detection of few-photon signals and attomolar-level immunosensing.

Sci Bull (Beijing)

August 2025

Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China. Electronic address:

Determining the number of photons in an incident light pulse at room temperature is the ultimate goal of photodetection. Herein, we report a plasmon-strain-coupled tens of photon level phototransistor by integrating monolayer MoS on top of Au nanowire (NW). Within this structure, Au NW can greatly enhance incident light intensity around MoS, and the large tensile strain can reduce the contact energy barrier between MoS and Au NW, so as to achieve efficient injection of plasmonic hot electrons into MoS.

View Article and Find Full Text PDF

The determination of homocysteine (HCys) has garnered significant interest within the biomedical community in recent years, as it serves as a key biomarker for a variety of diseases. Disruptions in HCys metabolism can lead to elevated blood levels of HCys, which are associated with cardiovascular diseases, Parkinson's disease, and etc. Therefore, the sensitive analysis of HCys levels in biological samples is crucial.

View Article and Find Full Text PDF