98%
921
2 minutes
20
Introduction: Hypothermia improves survival and neurological recovery after cardiac arrest. Pro-inflammatory cytokines have been implicated in focal cerebral ischemia/reperfusion injury. It is unknown whether cardiac arrest also triggers the release of cerebral inflammatory molecules, and whether therapeutic hypothermia alters this inflammatory response. This study sought to examine whether hypothermia or the combination of hypothermia with anesthetic post-conditioning with sevoflurane affect cerebral inflammatory response after cardiopulmonary resuscitation.
Methods: Thirty pigs (28 to 34 kg) were subjected to cardiac arrest following temporary coronary artery occlusion. After seven minutes of ventricular fibrillation and two minutes of basic life support, advanced cardiac life support was started according to the current American Heart Association guidelines. Return of spontaneous circulation was achieved in 21 animals who were randomized to either normothermia at 38 degrees C, hypothermia at 33 degrees C or hypothermia at 33 degrees C combined with sevoflurane (each group: n = 7) for 24 hours. The effects of hypothermia and the combination of hypothermia with sevoflurane on cerebral inflammatory response after cardiopulmonary resuscitation were studied using tissue samples from the cerebral cortex of pigs euthanized after 24 hours and employing quantitative RT-PCR and ELISA techniques.
Results: Global cerebral ischemia following resuscitation resulted in significant upregulation of cerebral tissue inflammatory cytokine mRNA expression (mean +/- SD; interleukin (IL)-1beta 8.7 +/- 4.0, IL-6 4.3 +/- 2.6, IL-10 2.5 +/- 1.6, tumor necrosis factor (TNF)alpha 2.8 +/- 1.8, intercellular adhesion molecule-1 (ICAM-1) 4.0 +/- 1.9-fold compared with sham control) and IL-1beta protein concentration (1.9 +/- 0.6-fold compared with sham control). Hypothermia was associated with a significant (P < 0.05 versus normothermia) reduction in cerebral inflammatory cytokine mRNA expression (IL-1beta 1.7 +/- 1.0, IL-6 2.2 +/- 1.1, IL-10 0.8 +/- 0.4, TNFalpha 1.1 +/- 0.6, ICAM-1 1.9 +/- 0.7-fold compared with sham control). These results were also confirmed for IL-1beta on protein level. Experimental settings employing hypothermia in combination with sevoflurane showed that the volatile anesthetic did not confer additional anti-inflammatory effects compared with hypothermia alone.
Conclusions: Mild therapeutic hypothermia resulted in decreased expression of typical cerebral inflammatory mediators after cardiopulmonary resuscitation. This may confer, at least in part, neuroprotection following global cerebral ischemia and resuscitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875536 | PMC |
http://dx.doi.org/10.1186/cc8879 | DOI Listing |
J Crohns Colitis
September 2025
Department of Gastroenterology, University Hospital of Marseille Nord, Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France.
Background And Aims: While this strategy is frequently used for other biologics, real-world evidence on subcutaneous (SC) vedolizumab (VDZ) dose intensification in inflammatory bowel disease (IBD) is lacking. This study aimed to assess the effectiveness and safety of SC VDZ intensification.
Methods: We conducted a retrospective study in 25 centers including all patients with active ulcerative colitis (UC) or Crohn's disease (CD) (defined by PRO2), and incomplete or loss of response to SC VDZ 108mg EOW when the drug was intensified.
PLoS Pathog
September 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Neuroinflammation within the central nervous system (CNS) is recognized as a critical pathological process in meningitic Escherichia coli (E. coli) infection, leading to severe neurodegenerative disorders and long-term sequelae. Astrocyte reactivity plays a pivotal role in driving the neuroinflammatory cascade in response to pathological stimuli from peripheral sources or other cellular components of the CNS.
View Article and Find Full Text PDFAnesthesiology
September 2025
Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida.
Background: The brain-gut-microbiome (BGM) axis is a communication network through which the brain and gastrointestinal microbiota interact via neural, hormonal, immune, and gene expression mechanisms. Gut microbiota dysbiosis is thought to contribute to neurocognitive disorders, including perioperative neurocognitive disorder (PND), and to various metabolic abnormalities. Recently, we reported that sevoflurane induces neurocognitive deficits in exposed rats as well as their future offspring, with male offspring being particularly affected (intergenerational PND).
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Brain ischemia is a major global cause of disability, frequently leading to psychoneurological issues. This study investigates the effects of 4-aminopyridine (4-AP) on anxiety, cognitive impairment, and potential underlying mechanisms in a mouse model of medial prefrontal cortex (mPFC) ischemia. Mice with mPFC ischemia were treated with normal saline (NS) or different doses of 4-AP (250, 500, and 1000 µg/kg) for 14 consecutive days.
View Article and Find Full Text PDFCell Biochem Biophys
September 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia.