Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A Helical Tomotherapy (HT) Hi-Art II (TomoTherapy, Inc., Madison, WI, USA) has been one of the important innovations to help deliver IMRT with image guidance. On-board, mega voltage computed tomography (MVCT) detectors are used for imaging and dosimetric purpose. The two objectives of this study are: (i) To estimate the dosimetric and general capability (TomoImage registration, reconstruction, contrast and spatial resolution, artifacts-free image and dose in TomoImage) of on-board MVCT detectors. (ii) To measure the dosimetric parameters (output and energy) following major repair. The MVCT detectors also estimated the rotational output constancy well. During this study, dosimetric tests were repeated after replacing MVCT detectors and the target. fixed-gantry/fixed-couch measurements were measured daily to investigate; the system stability. Thermoluminescense dosimeter (TLD) was used during both the measurements subsequently. The MVCT image quality with old and new detectors was comparable and hence acceptable clinically. The spatial resolution was optimal and the dose during TomoImage was 2 cGy (well within the manufacturer tolerance of 4 cGy). The results of lateral beam profiles showed an excellent agreement between the two normalized plots. The output from the rotational procedure revealed 99.7% while the energy was consistent over a period of twelve months. The Hi-Art II system has maintained its calibration to within +/- 2% and energy to within +/- 1.5% over the initial twelve-month period. Based on the periodic measurements for rotational output and consistency in the lateral beam profile shape, the on-board detector proved to be a viable dosimetric quality assurance tool for IMRT with Tomotherapy. Tomotherapy was stable from the dosimetric point of view during the twelve-month period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805893PMC
http://dx.doi.org/10.4103/0971-6203.51933DOI Listing

Publication Analysis

Top Keywords

mvct detectors
16
mega voltage
8
voltage computed
8
computed tomography
8
dosimetric parameters
8
hi-art tomotherapy
8
spatial resolution
8
dose tomoimage
8
rotational output
8
lateral beam
8

Similar Publications

As advanced delivery techniques such as intensity-modulated radiation therapy (IMRT) become conventional in veterinary radiotherapy, highly modulated radiation delivery helps to decrease dose to normal tissues. However, IMRT is only effective if patient setup and anatomy are accurately replicated for each treatment. Numerous techniques have been implemented to decrease patient setup error, however tumor shrinkage, variations in the patient's contour and weight loss continue to be hard to control and can result in clinically relevant dose deviation in radiotherapy plans.

View Article and Find Full Text PDF

There is no ideal detector-phantom combination to perform patient specific quality assurance (PSQA) for Total Marrow (TMI) and Lymphoid (TMLI) Irradiation plan. In this study, 3D dose reconstruction using mega voltage computed tomography detectors measured Leaf Open Time Sinogram (LOTS) was investigated for PSQA of TMI/TMLI patients in helical tomotherapy. The feasibility of this method was first validated for ten non-TMI/TMLI patients, by comparing reconstructed dose with (a) ion-chamber (IC) and helical detector array (ArcCheck) measurement and (b) planned dose distribution using 3Dγ analysis for 3%@3mm and dose to 98% (D) and 2% (D) of PTVs.

View Article and Find Full Text PDF

Purpose: Megavoltage CT (MVCT) images are noisier than kilovoltage CT (KVCT) due to low detector efficiency to high-energy x rays. Conventional denoising methods compromise edge resolution and low-contrast object visibility. In this work, we incorporated block-matching 3D-transform shrinkage (BM3D) transformation into MVCT iterative reconstruction as nonlocal patch-wise regularization.

View Article and Find Full Text PDF

TransitQA - A new method for transit dosimetry of Tomotherapy patients.

Med Phys

January 2018

Department of Radiation Oncology, HFR - Hôpital Fribourgeois, Chemin des Pensionnats, Fribourg, Switzerland.

Purpose: TransitQA is an innovative method for Tomotherapy transit dosimetry using the on-board detector (OBD). Our previously published model for Tomotherapy treatment plan verification (AirQA) has been enhanced to take into account patient and couch transmission. AirQA estimates the OBD signal during irradiation with nothing in the beam path from the leaf control sinogram, allowing us to check whether the planned treatment is correctly delivered by the machine.

View Article and Find Full Text PDF

This study utilizes process control techniques to identify action limits for TomoTherapy couch positioning quality assurance tests. A test was introduced to monitor accuracy of the applied couch offset detection in the TomoTherapy Hi-Art treatment system using the TQA "Step-Wedge Helical" module and MVCT detector. Individual X-charts, process capability (cp), probability (P), and acceptability (cpk) indices were used to monitor a 4-year couch IEC offset data to detect systematic and random errors in the couch positional accuracy for different action levels.

View Article and Find Full Text PDF