98%
921
2 minutes
20
Background: As uricoletic animals, chickens produce cleidoic eggs, which are self-contained bacteria-resistant biological packages for extra-uterine development of the chick embryo. The eggshell constitutes a natural physical barrier against bacterial penetration if it forms correctly and remains intact. The eggshell's remarkable mechanical properties are due to interactions among mineral components and the organic matrix proteins. The purpose of our study was to identify novel eggshell proteins by examining the transcriptome of the uterus during calcification of the eggshell. An extensive bioinformatic analysis on genes over-expressed in the uterus allowed us to identify novel eggshell proteins that contribute to the egg's natural defenses.
Results: Our 14 K Del-Mar Chicken Integrated Systems microarray was used for transcriptional profiling in the hen's uterus during eggshell deposition. A total of 605 transcripts were over-expressed in the uterus compared with the magnum or white isthmus across a wide range of abundance (1.1- to 79.4-fold difference). The 605 highly-expressed uterine transcripts correspond to 469 unique genes, which encode 437 different proteins. Gene Ontology (GO) analysis was used for interpretation of protein function. The most over-represented GO terms are related to genes encoding ion transport proteins, which provide eggshell mineral precursors. Signal peptide sequence was found for 54 putative proteins secreted by the uterus during eggshell formation. Many functional proteins are involved in calcium binding or biomineralization--prerequisites for interacting with the mineral phase during eggshell fabrication. While another large group of proteins could be involved in proper folding of the eggshell matrix. Many secreted uterine proteins possess antibacterial properties, which would protect the egg against microbial invasion. A final group includes proteases and protease inhibitors that regulate protein activity in the acellular uterine fluid where eggshell formation takes place.
Conclusions: Our original study provides the first detailed description of the chicken uterus transcriptome during formation of the eggshell. We have discovered a cache of about 600 functional genes and identified a large number of encoded proteins secreted into uterine fluid for fabrication of the eggshell and chemical protection of the egg. Some of these uterine genes could prove useful as biological markers for genetic improvement of phenotypic traits (i.e., egg and eggshell quality).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827412 | PMC |
http://dx.doi.org/10.1186/1471-2164-11-57 | DOI Listing |
Ecol Evol
September 2025
Aquatic Systems Biology Unit TUM School of Life Sciences, Technical University of Munich Freising Germany.
Historically, the thick-shelled river mussel ( agg. complex) was considered a single, widespread species across Europe. However, recent phylogenetic taxonomic revisions have delineated 12 species from this complex, including (s.
View Article and Find Full Text PDFPoult Sci
August 2025
Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, N1G2W1 Canada; Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, Ontario N1G2W1 Canada. Electronic address:
Laying hens possess a calcium-specific appetite that intensifies towards lights out to meet the high demands for eggshell formation and skeletal maintenance. Pecking blocks (PBs) are edible enrichments that can serve as an additional calcium source. We explored the relationships between PB preference (PBp), PB use, keel fracture status (KS), and eggshell quality.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
The Materials Engineering Department, Faculty of Engineering, Kasetsart University, Phaholyothin Rd., Bangkok 10900, Thailand. Electronic address:
A prototype bioactive calcium phosphate model-specifically hydroxyapatite (HA) derived from eggshells-was developed using a sodium silicate (NaSiO) solution as an inorganic binder, precursor, and reinforcing agent, in combination with collagen nanofibers for bone engineering applications. The sodium silicate solution, functioning as a waterglass adhesive, introduced cohesive forces within the hydroxyapatite matrix, thereby enhancing its physical, chemical, and mechanical properties. Eggshell-derived bioactive hydroxyapatite offers several advantages, including non-toxicity, biocompatibility, collagen adhesion, and the ability to mimic bone structure, making it suitable for tissue engineering.
View Article and Find Full Text PDFPoult Sci
August 2025
National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China. Electronic address:
Analyzing consumers' preferences and perceptions of eggs can provide data support for the egg industry to produce products that better meet consumer preferences. The study evaluated consumers' egg consumption preferences based on an online survey from 2022 to 2024 of 3,434 consumers of different ages. The results showed that Generation Z (Gen Z), referred to the people born after 1997, was more concerned about the topic of eggs and was willing to purchase eggs through e-commerce platforms.
View Article and Find Full Text PDFAnn N Y Acad Sci
September 2025
Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, China.
Bacterial infections have become a major challenge to global public health security. In this study, based on the concept of green synthesis, three cerium dioxide (CeO)-calcium oxide (CaO) composites (CS-CeO@CaO, CT-CeO@CaO, and CTD-CeO@CaO) were developed using chemical hydrothermal (CS), chrysanthemum tea impregnation (CT), and residue impregnation (CTD). Eggshell-derived calcium oxide was used as the carrier, in combination with the functional components of chrysanthemum tea and its residue extract.
View Article and Find Full Text PDF