Structural and functional comparison of MIF ortholog from Plasmodium yoelii with MIF from its rodent host.

Mol Immunol

Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5# Dong Dan 3 Tiao, Beijing 100005, China.

Published: January 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Host-derived macrophage migration inhibitory factor (MIF) has been implicated in the pathogenesis of malaria infection, especially in malarial anemia. Although two Plasmodium parasite-derived MIF orthologs, Plasmodium falciparum MIF and P. berghei MIF were identified recently, the crystal structure and the precise roles of Plasmodium-derived MIFs, particularly in combination with the host MIF, remain unknown. In this study, we identified another MIF ortholog from a rodent-specific P. yoelii (PyMIF). This molecule shares a conserved three-dimensional structure with murine MIF (MmMIF), but with a different substrate binding pattern and much lower tautomerase activity. It could activate host cells via several signaling pathways in vitro, and inhibiting macrophage apoptosis, also similarly to MmMIF. However, we found that PyMIF and MmMIF acted synergistically to activate the MAPK-ERK1/2 signaling pathway at very low concentration but acted antagonistically at higher concentration. Furthermore, we detected PyMIF in the sera of infected mice and found that injection of recombinant PyMIF (rPyMIF) during infection could up-regulate several pro-inflammatory cytokines in vivo and slightly delay the death of infected mice. These data suggest that PyMIF modulates host immune responses together with host MIF and has potential to prolong parasitemia or the chronicity of malaria infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2009.10.037DOI Listing

Publication Analysis

Top Keywords

mif
10
mif ortholog
8
malaria infection
8
host mif
8
infected mice
8
host
5
pymif
5
structural functional
4
functional comparison
4
comparison mif
4

Similar Publications

Objective: Diabetes mellitus combined with nonalcoholic fatty liver disease is a prevalent and intricate metabolic disorder that presents a significant global health challenge, imposing economic and emotional burdens on society and families. An in-depth understanding of the disease pathogenesis is crucial for enhancing diagnostic and therapeutic efficacy. Therefore, the study aims to identify and validate autophagy-related diagnostic biomarkers associated with T2DM-associated MAFLD, investigate regulatory mechanisms in disease progression, and explore cellular diversity within the same tissue using single-cell sequencing data.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

In obstructive sleep apnea (OSA), repeated airway obstruction alters mucosal inflammation, which increases exhaled nitric oxide (NO) production in the nasal cavity. However, the underlying mechanism remains unclear. Accordingly, we aimed to examine the mechanism underlying NO production in patients with OSA.

View Article and Find Full Text PDF

The role of activated microglia in Alzheimer's disease (AD) is well established; the proportion of stage III activated microglia has been associated with AD and cognitive decline, but this morphologically defined subtype is relatively uncommon (1-2% of microglia) and its cellular function is unknown. Single-cell RNA-sequencing revealed CD74 as a marker gene that is enriched in immunologically active microglial subtypes associated with AD. Here, we evaluated the relationship between CD74 expression, AD-related traits, and microglial morphology using dorsolateral prefrontal cortex samples from two brain collections (ROSMAP: n=63, NYBB: n=91).

View Article and Find Full Text PDF

Satellite cells choreograph an immune cell-fibrogenic cell circuit during mechanical loading in geriatric skeletal muscle.

PNAS Nexus

September 2025

Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, 155 Stadium Drive, Fayetteville, AR 72701, USA.

Muscle stem cells, or satellite cells (SCs), decline in number throughout the lifespan and may become senescent in very old age. Whether and how remaining SCs contribute to muscle adaptation in the oldest-old is unclear. Using acute mechanical overload in geriatric SC replete and depleted mice (28-month-old) combined with single-cell RNA-sequencing, we show: (i) subsets of geriatric SCs display signs of senescence as well as normal fate progression during overload, (ii) SCs express markers that may contribute to the regulation of innervation, (iii) the presence of SCs during overload enhances global intercellular communication and increases mRNA levels of the cell surface receptor in immune cells, (iv) macrophage migration inhibitory factor (), the primary ligand for CD74, is enriched in fibrogenic cells and is more pronounced in the absence of SCs-perhaps to normalize dysregulated fibrotic signaling and migration in macrophages, and (v) SCs influence cell fate dynamics to promote the canonical macrophage response to hypertrophic loading.

View Article and Find Full Text PDF