98%
921
2 minutes
20
A detailed ionic component record was performed on EPICA Dome C ice core (East Antarctica) to a depth of 3190 m using Ion Chromatography and Fast Ion Chromatography (FIC). At depths greater than 2800 m, the sulfate profile shows intense, sharp spikes which are not expected due to the smoothing of sulfate peaks by diffusion processes. Moreover, these spikes show an "anomalous" chemical composition (e.g., unusually low acidity, high Mg(2+) concentration and high Mg(2+)/Ca(2+) ratio). These peaks and the surrounding layers also exhibit good Mg(2+) vs SO(4)(2-) and Cl(-) vs Na(+) correlations through both glacial and interglacial periods. Furthermore, the high-resolution analysis of two horizontally contiguous ice sections showed that some fraction of the impurities are characterized by a heterogeneous distribution. Altogether, these results suggest the occurrence of long-term postdepositional processes involving a rearrangement of impurities via migration in the vein network, characterized by sulfuric acidity and leading to the formation of soluble particles of magnesium sulfate salts, along with ionic association of ions in the liquid films along boundaries. This evidence should be taken into consideration when inferring information on for rapid climatic and environmental changes from ice core chemical records at great depths. At Dome C, the depth threshold was found to be 2800 m.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es901426y | DOI Listing |
Alzheimers Dement
September 2025
Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
We describe the rationale, methodology, and design of the Boston University Alzheimer's Disease Research Center (BU ADRC) Clinical Core (CC). The CC characterizes a longitudinal cohort of participants with/without brain trauma to characterize the clinical presentation, biomarker profiles, and risk factors of post-traumatic Alzheimer's disease (AD) and AD-related dementias (ADRD), including chronic traumatic encephalopathy (CTE). Participants complete assessments of traumatic brain injury (TBI) and repetitive head impacts (RHIs); annual Uniform Data Set (UDS) and supplementary evaluations; digital phenotyping; annual blood draw; magnetic resonance imaging (MRI) and lumbar puncture every 3 years; electroencephalogram (EEG); and amyloid and/or tau positron emission tomography (PET) on a subset.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
School of Sports Science and Technology, Guangzhou College of Applied Science and Technology, Guangdong, China.
Objective: This study combines a bibliometric analysis with an umbrella review to delineate the research landscape, hotspots, and emerging trends in the application of artificial intelligence to the clinical diagnosis and treatment of mild cognitive impairment.
Methods: We searched the Web of Science Core Collection for literature published between 2004 and 2024. Bibliometric analysis of the retrieved publications was performed using CiteSpace and VOSviewer to map publication trends, international collaboration networks, key contributors, and keyword co-occurrence.
Small
August 2025
College of Chemical Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
N-doped porous carbon materials are promising potassium-ion battery anodes for overcoming the depressing rate performance and poor cycling stability issues associated with the oversized radius of K-ion. However, the relatively low initial coulombic efficiency (ICE) as a result of porous structure and doped heteroatoms may limit the future application of potassium-ion batteries. Herein, a novel N-doped porous graphite-like carbon armored with dense amorphous shell is synthesized through a Trojan horse strategy by etching and doping the carbon matrix from inside out using oxidized coal tar pitch coated CN as precursor.
View Article and Find Full Text PDFISME J
August 2025
School of Oceanography & Astrobiology Program, University of Washington, Seattle, WA, USA.
Despite growing evidence for the role of DNA methylation in bacterial acclimation to environmental stress, this epigenetic mechanism remains unexplored in sea-ice microbial communities known to tolerate multiple stressors. This study presents a first analysis of DNA methylation patterns in bacterial communities and associated viruses across the vertical thickness of sea ice. Using a novel stepped-sackhole method, we collected sea-ice brines from distinct horizons of an Arctic ice floe, capturing microbial communities that had been exposed to different environmental conditions.
View Article and Find Full Text PDFCamb Prism Coast Futur
January 2025
Science Diplomacy Center™, Falmouth, MA, USA.
The 5th International Polar Year (IPY-5) in 2032-2033 represents an important next step in the legacy of the oldest continuous climate research program created by humanity, which intentionally began during a Solar Maximum with IPY-1 in 1882-1883, following the Little Ice Age. Current IPY-5 planning by the International Arctic Science Committee (IASC) and Scientific Committee on Antarctic Research (SCAR) is "From IPY-4 to IPY-5" with scope since 2007-2008, considering relevant large-scale polar process, international activities and UN decades. Additionally, there are essential features to incorporate into IPY-5 planning with Indigenous knowledge as well as next-generation leadership along with international science connections across the United Nations, involving core integration of data system and Earth-Sun system research, which accelerated with the International Geophysical Year (IGY) in 1957-1958 that was renamed from IPY-3.
View Article and Find Full Text PDF