Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Graves' disease (GD) is an autoimmune disease of the thyroid gland caused by autoantibodies against thyroid-stimulating hormone receptor (TSHR). Currently, the diagnostic test for TSHR autoantibodies is based on an indirect competitive binding assay that measures the ability of TSHR autoantibodies to inhibit the binding of thyroid-stimulating hormone (TSH) to TSHR. Here, we have developed a specific and direct diagnostic method for autoantibodies in GD that incorporates immobilized TSHR-containing recombinant proteoliposomes into an enzyme-linked immunosorbent assay (ELISA). To reduce non-specific binding of autoantibodies to recombinant proteoliposomes, we investigated the effect of polyethylene glycol (PEG)-lipid on the binding of commercially available anti-TSHR antibodies (aTSHRAb). The incorporation of PEG-lipids into liposomes decreased non-specific binding, as compared to liposomes that did not contain PEG-lipids, and the addition of blocking reagents further decreased non-specific reactivity. aTSHRAb exhibited higher reactivity towards PEG-modified TSHR recombinant proteoliposomes than PEG-modified liposomes without TSHR (bare liposomes). Importantly, serum autoantibodies from patients with GD, which is associated with hyperthyroidism, exhibited remarkably specific binding to TSHR recombinant proteoliposomes. Serum autoantibodies from patients with Hashimoto's disease (HD), which is associated with hypothyroidism, also reacted specifically with proteoliposomal TSHR. These results suggest that immobilized TSHR recombinant proteoliposomes can serve as a direct diagnostic test for GD and HD. Furthermore, given that there is no competition test currently available for detecting autoantibodies in HD, the combination of TSHR recombinant proteoliposome ELISA and indirect competitive TSHR binding assay might be an effective way to discriminate between GD and HD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2009.06.006DOI Listing

Publication Analysis

Top Keywords

recombinant proteoliposomes
24
tshr recombinant
16
thyroid-stimulating hormone
12
tshr
11
graves' disease
8
hashimoto's disease
8
autoantibodies
8
diagnostic test
8
tshr autoantibodies
8
indirect competitive
8

Similar Publications

We explored how the phosphorylation state of collapsin response mediator protein 2 (CRMP2) influences mitochondrial functions in cultured cortical neurons and cortical synaptic mitochondria isolated from APP-SAA KI mice, a knock-in APP mouse model of Alzheimer's disease (AD). CRMP2 phosphorylation was increased at Thr 509/514 and Ser 522 in brain cortical lysates and cultured neurons from AD mice. The basal and maximal respiration of AD neurons were decreased.

View Article and Find Full Text PDF

Theanine is a core secondary metabolite responsible for the sensory qualities and health benefits of tea. Theanine levels are high in new tea plant (Camellia sinensis) shoots that arise during early spring, but then significantly decrease in late spring, causing a rapid decline in the quality of green tea processed from the late-spring harvest. However, the molecular mechanisms underlying this seasonal decrease in theanine levels remain unknown.

View Article and Find Full Text PDF

One of the most common issues in producing membrane proteins in heterologous expression systems is the low yield of purified protein. The solubilization efficiency of the recombinant membrane protein from biological membranes is often the limiting step. Here, we study the effects of titration of the GAL10-CYC promoter of Saccharomyces cerevisiae, induction time, and culture media, on the rat mitochondrial uncoupling protein (UCP1) production and solubilization levels.

View Article and Find Full Text PDF

Production of the recombinant human riboflavin transporters SLC52A1, 3 and functional assay in proteoliposomes.

Arch Biochem Biophys

April 2025

Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy. Electronic address:

Riboflavin, the FMN and FAD precursor, is a crucial vitamin in cell metabolism. Its adsorption and tissue distribution are mediated by tree membrane transporters namely RFVT1-3. Mutations of their genes are associated with Riboflavin Transporter Deficiency.

View Article and Find Full Text PDF

The human mitochondrial nicotinamide nucleotide transhydrogenase (NNT) uses the proton motive force to drive hydride transfer from NADH to NADP and is a major contributor to the generation of mitochondrial NADPH. NNT plays a critical role in maintaining cellular redox balance. NNT-deficiency results in oxidative damage and its absence results in familial glucocorticoid deficiency.

View Article and Find Full Text PDF