Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
One of the most common issues in producing membrane proteins in heterologous expression systems is the low yield of purified protein. The solubilization efficiency of the recombinant membrane protein from biological membranes is often the limiting step. Here, we study the effects of titration of the GAL10-CYC promoter of Saccharomyces cerevisiae, induction time, and culture media, on the rat mitochondrial uncoupling protein (UCP1) production and solubilization levels. We found that a maximum threshold of solubilized UCP1 (70%) is reached at 0.003% galactose concentration, independently of time, temperature, and detergent-to-protein ratio during solubilization. Supplementation with 0.1% amino acids of the S-lactate medium at induction resumes cell growth and recombinant protein production. The purified UCP1 protein (0.2 mg/L) is homogenous in DDM detergent and active after reconstitution in proteoliposomes. To extend the impact of our findings, we applied the same promoter titration to produce the GFP-AT7B human transporter and found an optimal galactose concentration of 0.0015%. The protein data bank analysis revealed that these galactose concentrations are 300 times lower than usual. We propose a novel strategy for the recombinant production of membrane proteins in the yeast S. cerevisiae, which unlocks the use of this inexpensive eukaryotic host for membrane protein production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012841 | PMC |
http://dx.doi.org/10.1002/pro.70125 | DOI Listing |