Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

By using geostatistic methods, this paper studied the spatial variation and distribution of soil organic matter as well as its ecological processes and related mechanisms in four typical disturbed areas (cropland, man-made forest, secondary forest, and primary forest) of karst peak cluster depressions in northwest Guangxi of China. Eighty soil samples (0-20 cm) were collected from an aligned grid of 10 m x 10 m for the analysis of soil organic matter. The soil organic matter content increased significantly (P < 0.05) with the decrease of disturbance and the vegetation succession from crop to man-made forest to secondary forest to primary forest. Soil organic matter content had good spatial autocorrelation in all of the four typical disturbed areas, but its spatial heterogeneity differed. Gaussian model fitted best to the semivariance functions of soil organic matter content in the study areas except secondary forest area where exponential model fitted well. In cropland area, the spatial autocorrelation of soil organic matter was at medium level, with the C0/(C0 + C) being 26.5%; while in the other three areas, the spatial autocorrelation was at high level, with the C0/(C0 + C) being 9.0%-22.6%. The range and scale of the spatial autocorrelation of soil organic matter in cropland and man-made forest areas were larger than those in the other two areas, possibly due to the strong human disturbance and the homogeneity of low energy. The range of the spatial autocorrelation of soil organic matter in primary forest area was large due to the high vegetation coverage, while that in secondary forest area was the lowest due to the diverse vegetation communities and their uneven distribution. The low fractal value (D) of semivariance functions of soil organic matter in man-made forest and primary forest areas suggested that a strong spatial dependence existed, while the high D in cropland and secondary forest areas suggested a great random variance of spatial distribution of soil organic matter occurred. The spatial pattern of soil organic matter presented a unimodal distribution in cropland and man-made forest areas, a concave distribution in secondary forest area, and a gibbous distribution in primary forest area. To reduce human disturbance would be helpful to the soil quality improvement, rapid vegetation restoration, and ecological reconstruction of karst degenerative ecosystems.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil organic
48
organic matter
48
secondary forest
24
man-made forest
20
primary forest
20
spatial autocorrelation
20
forest area
20
forest
16
forest areas
16
soil
14

Similar Publications

Microbial Physiological Adaptation to Biodegradable Microplastics Drives the Transformation and Reactivity of Dissolved Organic Matter in Soil.

Environ Sci Technol

September 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.

The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.

View Article and Find Full Text PDF

The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.

View Article and Find Full Text PDF

Cerrado ash reduces volatile emissions from faeces but does not influence the olfactory responses of the dung beetles.

Naturwissenschaften

September 2025

Laboratório de Ecologia E Conservação de Invertebrados, LECIN, Departamento de Ecologia E Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, PO Box 3037, CEP 37.203-202, Lavras, MG, Brasil.

Fire is a key natural disturbance influencing physical, chemical, and biological processes in the Cerrado. Ash, a fire byproduct, may significantly influence soil macrofauna through its chemical properties. Dung beetles (Scarabaeinae), critical components of Cerrado soil macrofauna, provide key ecological functions and services.

View Article and Find Full Text PDF

Evaluation of the impact of sugarcane trash in situ incorporation on soil health in North Haryana.

Environ Monit Assess

September 2025

Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.

India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.

View Article and Find Full Text PDF

Introduction: Peatlands store up to a third of global soil carbon, and in high latitudes their litter inputs are increasing and changing in composition under climate change. Although litter significantly influences peatland carbon and nutrient dynamics by changing the overall lability of peatland organic matter, the physicochemical mechanisms of this impact-and thus its full scope-remain poorly understood.

Methods: We applied multimodal metabolomics (UPLC-HRMS, H NMR) paired with C Stable Isotope-Assisted Metabolomics (SIAM) to track litter carbon and its potential priming effects on both existing soil organic matter and carbon gas emissions.

View Article and Find Full Text PDF