Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, we detect and characterize the carbon contamination layers that are formed during the illumination of extreme ultraviolet (EUV) multilayer mirrors. The EUV induced carbon layers were characterized ex situ using spectroscopic ellipsometry (SE) and laser generated surface acoustic waves (LG-SAW). We show that both LG-SAW and SE are very sensitive for measuring carbon layers, even in the presence of the highly heterogeneous structure of the multilayer. SE has better overall sensitivity, with a detection limit of 0.2 nm, while LG-SAW has an estimated detection limit of 2 nm. In addition, SE reveals that the optical properties of the EUV induced carbon contamination layer are consistent with the presence of a hydrogenated, polymeric like carbon. On the other hand, LG-SAW reveals that the EUV induced carbon contamination layer has a low Young's modulus (<100 GPa), which means that the layer is mechanically soft. We compare the limits of detection and quantification of the two techniques and discuss their prospective for monitoring carbon contamination build up on EUV optics.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.17.016969DOI Listing

Publication Analysis

Top Keywords

carbon contamination
16
euv induced
12
induced carbon
12
euv multilayer
8
multilayer mirrors
8
carbon layers
8
detection limit
8
contamination layer
8
carbon
7
euv
5

Similar Publications

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

Beilstein J Nanotechnol

August 2025

Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.

View Article and Find Full Text PDF

Aerobic degradation of hexachlorobenzene and pentachloronitrobenzene by Cupriavidus nantongensis HB4B5: Dechlorination mechanisms and bioremediation potential.

Environ Int

August 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Organochlorine pesticides (OCPs), including hexachlorobenzene (HCB) and pentachloronitrobenzene (PCNB), are highly toxic and persistent pollutants that pose significant ecological and human health risks. Their chemical stability makes them particularly resistant to biodegradation. In this study, we isolated and characterized Cupriavidus nantongensis HB4B5, a novel aerobic bacterium capable of efficiently degrading HCB and PCNB, without the accumulation of toxic intermediates.

View Article and Find Full Text PDF

Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.

View Article and Find Full Text PDF

Decentralized wastewater management using treatment wetlands: Effective removal of antibiotics, resistance genes and organic micropollutants.

Sci Total Environ

September 2025

Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark.

Treatment wetlands (TW) are a popular choice for decentralized wastewater treatment, with substantial documentation on their capacity to manage conventionally monitored pollutants. However, most insights into their effectiveness against emerging contaminants come from lab and mesocosm studies with a limited number of compounds, highlighting knowledge gaps in their performance at full scale. This study provides a first long-term, full-scale assessment of TW ability to remove a large number of organic micropollutants (OMPs) and manage antibiotic resistance under real-world conditions.

View Article and Find Full Text PDF

Spatial patterns, enrichments and the ecotoxicological risks of potentially toxic elements (PTE: Cd, Cu, Pb, Zn) were evaluated in surface sediments of the Chacahua-Pastoría Lagoon System, the first tropical ecosystem designated as natural protected area along the southern Mexican Pacific Coast. With the exception of a Pb maximum in Chacahua Lagoon, only Cd (0.002-0.

View Article and Find Full Text PDF