How does graphene grow? Easy access to well-ordered graphene films.

Small

Anorganische und Allgemeine Chemie FR 8.1, Naturwissenschaftlich-Technische Fakultät III Chemie, Pharmazie und Werkstoffwissenschaften, Universität des Saarlandes C4.1, 66041 Saarbrücken, Germany.

Published: October 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The selective formation of large-scale graphene layers on a Rh-YSZ-Si(111) multilayer substrate by a surface-induced chemical growth mechanism is investigated using low-energy electron diffraction, X-ray photoelectron spectroscopy, X-ray photoelectron diffraction, and scanning tunneling microscopy. It is shown that well-ordered graphene layers can be grown using simple and controllable procedures. In addition, temperature-dependent experiments provide insight into the details of the growth mechanisms. A comparison of different precursors shows that a mobile dicarbon species (e.g., C(2)H(2) or C(2)) acts as a common intermediate for graphene formation. These new approaches offer scalable methods for the large-scale production of high-quality graphene layers on silicon-based multilayer substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.200900158DOI Listing

Publication Analysis

Top Keywords

graphene layers
12
well-ordered graphene
8
x-ray photoelectron
8
graphene
6
graphene grow?
4
grow? easy
4
easy access
4
access well-ordered
4
graphene films
4
films selective
4

Similar Publications

We review the fabrication and transport characterization of hexagonal boron nitride (hBN)/Bernal bilayer graphene (BLG) moiré superlattices. Due to the moiré effect, the hBN/BLG moiré superlattices exhibit an energy gap at the charge neutrality point (CNP) even in the absence of a perpendicular electric field. In BLG, the application of a perpendicular electric field tunes the energy gap at the CNP, which contrasts with single-layer graphene and is similar to the family of rhombohedral multilayer graphene.

View Article and Find Full Text PDF

Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.

View Article and Find Full Text PDF

Size-Controlled and Sintering-Resistant Sub-3 nm Pt Nanoparticles on Graphene by Temperature-Variation Atomic Layer Deposition.

Langmuir

September 2025

Product & Process Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands.

Noble metal nanoparticles (NPs), particularly platinum (Pt), are widely used in heterogeneous catalysis due to their exceptional activity. However, controlling their size and preventing sintering during synthesis remains a major challenge, especially when aiming for high dispersion and stability on supports such as graphene. Atomic layer deposition (ALD) has emerged as a promising method to address these issues, yet conventional processes often lead to broad particle size distributions (PSDs).

View Article and Find Full Text PDF

Hexaazaisowurtzitane (CL-20) is a high-energy-density compound with poor thermal stability, which hinders its application in composite energetic systems. A bi-interface structure of polydopamine-coated graphene oxide (GO@PDA) is shown to markedly improve thermal stability compared with pristine CL-20 and single-layer coatings. Reactive molecular dynamics simulations enhanced by a neural network potential (NNP) reveal that the delayed onset of decomposition arises from suppressed NO release and altered spatial density distribution, while interfacial -OH and -COOH groups consume intermediates, redirect decomposition pathways, and inhibit autocatalytic chain reactions.

View Article and Find Full Text PDF

Bimorph Soft Actuators Based on Isostructural Heterogeneous Janus Films.

ACS Nano

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.

View Article and Find Full Text PDF