98%
921
2 minutes
20
The interphase nucleus and nuclear envelope can acquire a myriad of shapes in normal or pathological cell states. There exist a wide variety of indentations and invaginations, of protrusions and evaginations. It has been difficult to classify and name all of these nuclear shapes and, consequently, a barrier to understanding the biochemical and biophysical causes. This review focuses upon one type of nuclear envelope shape change, named "nuclear envelope-limited chromatin sheets" (ELCS), which appears to involve exaggerated nuclear envelope growth, carrying with it one or more layers of approximately 30 nm diameter heterochromatin. A hypothesis on the formation of ELCS is proposed, relating higher order heterochromatin structure in an interphase nucleus, nuclear envelope growth, and nuclear envelope-heterochromatin interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00412-009-0219-3 | DOI Listing |
Nat Rev Mol Cell Biol
September 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
The defining property of eukaryotic cells is the storage of heritable genetic material in a nuclear compartment. For eukaryotic cells to carry out the myriad biochemical processes necessary for their function, macromolecules must be efficiently exchanged between the nucleus and cytoplasm. The nuclear pore complex (NPC) - which is a massive assembly of ~35 different proteins present in multiple copies totalling ~1,000 protein subunits and architecturally conserved across eukaryotes - establishes a size-selective channel for regulated bidirectional transport of folded macromolecules and macromolecular assemblies across the nuclear envelope.
View Article and Find Full Text PDFCurr Biol
September 2025
Department of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA. Electronic address:
Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a differential isoform-dependent mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope Klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity to achieve tissue-specific nuclear positioning.
View Article and Find Full Text PDFSci China Life Sci
September 2025
The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China.
Hutchinson-Gilford progeria syndrome (HGPS) is a rare progeroid disorder, and approximately 90% of cases are caused by LMNA mutation that yields the lamin A/C variant progerin. Progerin is toxic, and its clearance and disruption have positive benefits on HGPS cells and mice and even HGPS patients. However, accelerating progerin clearance is still an unaddressed issue.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Chemistry, Institute for Quantum Information Research and Engineering, and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113, United States.
Light-driven formation of radical ion pairs that occurs much faster than their electron spin dynamics results in correlated spins whose coherence properties can be used as a quantum-based electric field sensor. This results from the radical ion pair having charge and spin distributions that track one another. Thus, electric field induced changes in the distance between the two charges are reflected in the spin-spin distance that can be measured directly using out-of-phase electron spin echo envelope modulation (OOP-ESEEM), a pulse-EPR technique.
View Article and Find Full Text PDFBMB Rep
September 2025
Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499; Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon 16499; BK21 R&E Initiative for Advanced Precision Medicine, Ajou University School of Medicine, Suwon 16499, Korea.
Altered nuclear morphology, one of the characteristics of cancer cells, is often indicative of tumor prognosis. While reactive oxygen species (ROS) are known to induce nuclear morphology changes, mechanisms underlying these effects remain elusive, particularly regarding nuclear assembly. We hypothesized that mitotic cells might exhibit increased susceptibility to ROSinduced nuclear deformation due to the dynamic nature of nuclear envelope during mitosis, i.
View Article and Find Full Text PDF