98%
921
2 minutes
20
Background: Periods of anomalously warm ocean temperatures can lead to mass coral bleaching. Past studies have concluded that anthropogenic climate change may rapidly increase the frequency of these thermal stress events, leading to declines in coral cover, shifts in the composition of corals and other reef-dwelling organisms, and stress on the human populations who depend on coral reef ecosystems for food, income and shoreline protection. The ability of greenhouse gas mitigation to alter the near-term forecast for coral reefs is limited by the time lag between greenhouse gas emissions and the physical climate response.
Methodology/principal Findings: This study uses observed sea surface temperatures and the results of global climate model forced with five different future emissions scenarios to evaluate the "committed warming" for coral reefs worldwide. The results show that the physical warming commitment from current accumulation of greenhouse gases in the atmosphere could cause over half of the world's coral reefs to experience harmfully frequent (p> or =0.2 year(-1)) thermal stress by 2080. An additional "societal" warming commitment, caused by the time required to shift from a business-as-usual emissions trajectory to a 550 ppm CO(2) stabilization trajectory, may cause over 80% of the world's coral reefs to experience harmfully frequent events by 2030. Thermal adaptation of 1.5 degrees C would delay the thermal stress forecast by 50-80 years.
Conclusions/significance: The results suggest that adaptation -- via biological mechanisms, coral community shifts and/or management interventions -- could provide time to change the trajectory of greenhouse gas emissions and possibly avoid the recurrence of harmfully frequent events at the majority (97%) of the world's coral reefs this century. Without any thermal adaptation, atmospheric CO(2) concentrations may need to be stabilized below current levels to avoid the degradation of coral reef ecosystems from frequent thermal stress events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686172 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005712 | PLOS |
Mar Pollut Bull
September 2025
Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
Boat noise has been shown to distract and cause harm to many marine organisms. Most of the study effort has focused on fish & marine mammals, even though invertebrates represent over 92 % of all marine life. The few studies conducted on invertebrates have demonstrated clear negative effects of anthropogenic noise pollution.
View Article and Find Full Text PDFCytogenet Genome Res
September 2025
Background: The damselfishes, an extremely diverse group of herbivorous fish, stands out as an important and ubiquitous ecological component of coral reefs. In the Western South Atlantic, the genus Stegastes is the most representative, whose evolutionary paths and taxonomic status of insular endemic species have been better evaluated. To clarify the karyotypic evolution involved in the diversification of this group, cytogenetic analyses were performed in four nominal species (S.
View Article and Find Full Text PDFZoolog Sci
August 2025
Department of Biology, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan,
Many cnidarian animals possess multiple opsins, including a type known as cnidopsin, which is found throughout the phylum Cnidaria and is divided into several subgroups. Previous studies have suggested that cnidopsins from jellyfish and coral can light-dependently elevate intracellular cAMP levels, likely via activation of Gs-type G protein in cultured cells. However, their spectroscopic properties remain largely unclear, with the exception of jellyfish opsins.
View Article and Find Full Text PDFSci Total Environ
August 2025
School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA. Electronic address:
Coral reefs are threatened worldwide from unprecedented increases in ocean temperatures, resulting in corals gradually living closer to their maximum thermal threshold. With ocean temperatures expected to warm up to 3 °C by 2100, understanding the effects of chronic elevated baseline temperature is important in determining the thermal physiological limits of corals and developing realistic restoration strategies to ensure the future of coral reefs. Here, we tested the effects of 26 weeks (i.
View Article and Find Full Text PDFBiology (Basel)
August 2025
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
The crown-of-thorns starfish (CoTS, spp.), is responsible for a considerable amount of coral loss in the tropical Indo-Pacific region. After decimating coral populations through predation, it is expected that CoTS will face food scarcity before coral recovery.
View Article and Find Full Text PDF