98%
921
2 minutes
20
Objective: High-protein diets give rise to increased amplitude in the diurnal cycling of protein gains and losses at the whole-body level, but the tissue localization and mechanisms underlying these metabolic adaptations remain unclear. We investigated tissue-specific responses to increasing protein intakes in rats.
Methods: Protein synthesis rates (flooding dose with (13)C-valine) and accretion were assessed in individual tissues of fasted or fed rats (n = 32) after a 2-wk adaptation to a normal- or high-protein (HP) diet.
Results: In livers of HP rats, a strong inhibition of protein synthesis rates (-34%) occurred in the fasted and fed states, whereas a higher protein content (+10%) was observed. In the kidneys, a slight inhibition of synthesis rates after the HP diet was also observed but remained without effect on kidney protein pool size. Stomach and skin protein synthesis rates were significantly increased under HP conditions, whereas protein anabolism in skeletal muscle remained insensitive to the dietary protein level. This was also true for specific muscle protein fractions: myosin, mitochondrial, or sarcoplasmic protein synthesis rates were influenced by neither the dietary protein level nor the nutritional status.
Conclusion: Modulation of protein kinetics and accretion by the HP diet is tissue-specific and the liver plays a critical role in such adaptations in a unique situation associating an inhibition of protein synthesis and protein pool expansion. The mechanisms underlying these changes and their physiologic incidence remain to be elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nut.2009.01.013 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Rehabilitation Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.
View Article and Find Full Text PDFClin Mol Hepatol
September 2025
Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
Background/aims: Endoplasmic reticulum (ER) stress in hepatocytes plays a causative role in alcohol-associated liver disease (ALD). The incomplete inhibition of ER stress by targeting canonical ER stress sensor proteins suggests the existence of noncanonical ER stress pathways in ALD pathology. This study aimed to delineate the role of RAB25 in ALD and its regulatory mechanism in noncanonical ER stress pathways.
View Article and Find Full Text PDFProtein Cell
September 2025
Department of Human Cell Biology and Genetics, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
Breast cancer is a prevalent malignancy worldwide. The majority of breast cancers belong to the estrogen receptor (ER)-positive luminal subtype that can be effectively treated with antiestrogen therapies. However, a significant portion of such malignancies become hormone-refractory and incurable.
View Article and Find Full Text PDFJ Neurochem
September 2025
Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
Memory formation involves a complex interplay of molecular and cellular processes, including synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression (LTD). These processes rely on activity-dependent gene expression and local protein synthesis at synapses. A central unresolved question in neuroscience is how memories can be stably maintained over time, despite the transient nature of the proteins involved in their initial encoding.
View Article and Find Full Text PDFLab Chip
September 2025
Department of Engineering Design, Indian Institute of Technology Madras, India.
Microfluidic devices offer more accurate fluid flow control and lower reagent use for uniform nanoparticle synthesis than batch synthesis. Here, we propose a microfluidic device that synthesizes uniform iron oxide nanoparticles (IONPs) for highly efficient intracellular delivery. The 3D-printed device was fabricated, comprising two inlets in the T-shaped channel with an inner diameter of 2 mm, followed by a helical mixing channel with a single outlet.
View Article and Find Full Text PDF