Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: High-protein diets give rise to increased amplitude in the diurnal cycling of protein gains and losses at the whole-body level, but the tissue localization and mechanisms underlying these metabolic adaptations remain unclear. We investigated tissue-specific responses to increasing protein intakes in rats.

Methods: Protein synthesis rates (flooding dose with (13)C-valine) and accretion were assessed in individual tissues of fasted or fed rats (n = 32) after a 2-wk adaptation to a normal- or high-protein (HP) diet.

Results: In livers of HP rats, a strong inhibition of protein synthesis rates (-34%) occurred in the fasted and fed states, whereas a higher protein content (+10%) was observed. In the kidneys, a slight inhibition of synthesis rates after the HP diet was also observed but remained without effect on kidney protein pool size. Stomach and skin protein synthesis rates were significantly increased under HP conditions, whereas protein anabolism in skeletal muscle remained insensitive to the dietary protein level. This was also true for specific muscle protein fractions: myosin, mitochondrial, or sarcoplasmic protein synthesis rates were influenced by neither the dietary protein level nor the nutritional status.

Conclusion: Modulation of protein kinetics and accretion by the HP diet is tissue-specific and the liver plays a critical role in such adaptations in a unique situation associating an inhibition of protein synthesis and protein pool expansion. The mechanisms underlying these changes and their physiologic incidence remain to be elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nut.2009.01.013DOI Listing

Publication Analysis

Top Keywords

protein synthesis
24
synthesis rates
20
protein
17
high-protein diets
8
protein content
8
mechanisms underlying
8
fasted fed
8
inhibition protein
8
protein pool
8
dietary protein
8

Similar Publications

Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.

View Article and Find Full Text PDF

RAB25/GCN1 Signaling Promotes ER Stress to Mediate Alcohol-associated Liver Disease Progression.

Clin Mol Hepatol

September 2025

Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.

Background/aims: Endoplasmic reticulum (ER) stress in hepatocytes plays a causative role in alcohol-associated liver disease (ALD). The incomplete inhibition of ER stress by targeting canonical ER stress sensor proteins suggests the existence of noncanonical ER stress pathways in ALD pathology. This study aimed to delineate the role of RAB25 in ALD and its regulatory mechanism in noncanonical ER stress pathways.

View Article and Find Full Text PDF

Oncogenic role of the SLC7A13-SLC3A1 cystine transporter in human luminal breast cancer and its cryo-EM structure.

Protein Cell

September 2025

Department of Human Cell Biology and Genetics, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Breast cancer is a prevalent malignancy worldwide. The majority of breast cancers belong to the estrogen receptor (ER)-positive luminal subtype that can be effectively treated with antiestrogen therapies. However, a significant portion of such malignancies become hormone-refractory and incurable.

View Article and Find Full Text PDF

Role of CPEBs in Learning and Memory.

J Neurochem

September 2025

Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.

Memory formation involves a complex interplay of molecular and cellular processes, including synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression (LTD). These processes rely on activity-dependent gene expression and local protein synthesis at synapses. A central unresolved question in neuroscience is how memories can be stably maintained over time, despite the transient nature of the proteins involved in their initial encoding.

View Article and Find Full Text PDF

Microfluidic devices offer more accurate fluid flow control and lower reagent use for uniform nanoparticle synthesis than batch synthesis. Here, we propose a microfluidic device that synthesizes uniform iron oxide nanoparticles (IONPs) for highly efficient intracellular delivery. The 3D-printed device was fabricated, comprising two inlets in the T-shaped channel with an inner diameter of 2 mm, followed by a helical mixing channel with a single outlet.

View Article and Find Full Text PDF