One-pot multicomponent coupling methods for the synthesis of diastereo- and enantioenriched (Z)-trisubstituted allylic alcohols.

J Am Chem Soc

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.

Published: June 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(Z)-trisubstituted allylic alcohols are widespread structural motifs in natural products and biologically active compounds but are difficult to directly prepare. Introduced herein is a general one-pot multicomponent coupling method for the synthesis of (Z)-alpha,alpha,beta-trisubstituted allylic alcohols. (Z)-trisubstituted vinylzinc reagents are formed in situ by initial hydroboration of 1-bromo-1-alkynes. Addition of dialkylzinc reagents induces a 1,2-metalate rearrangement that is followed by a boron-to-zinc transmetalation. The resulting vinylzinc reagents add to a variety of prochiral aldehydes to produce racemic (Z)-trisubstituted allylic alcohols. When enantioenriched aldehyde substrates are employed, (Z)-trisubstituted allylic alcohols are isolated with high dr (>20:1 in many cases). For example, vinylation of enantioenriched benzyl-protected alpha- and beta-hydroxy propanal derivatives furnished the expected anti-Felkin addition products via chelation control. Surprisingly, silyl-protected alpha-hydroxy aldehydes also afford anti-Felkin addition products. A protocol for the catalytic asymmetric addition of (Z)-trisubstituted vinylzinc reagents to prochiral aldehydes with a (-)-MIB-based catalyst has also been developed. Several additives were investigated as inhibitors of the Lewis acidic alkylzinc halide byproducts, which promote the background reaction to form the racemate. Alpha-ethyl and alpha-cyclohexyl (Z)-trisubstituted allylic alcohols can now be synthesized with excellent levels of enantioselectivity in the presence of diamine inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749706PMC
http://dx.doi.org/10.1021/ja809821xDOI Listing

Publication Analysis

Top Keywords

allylic alcohols
24
z-trisubstituted allylic
20
vinylzinc reagents
12
one-pot multicomponent
8
multicomponent coupling
8
alcohols z-trisubstituted
8
z-trisubstituted vinylzinc
8
prochiral aldehydes
8
anti-felkin addition
8
addition products
8

Similar Publications

Previously published (NMe)[V(O)(μ-O)(pin)], has been shown to aerobically catalyze the oxidation of benzylic and allylic alcohols under mild conditions. Herein, we report syntheses of [V(O)(μ-O)(pin)] trimers, which are also active in OAD catalysis. Trimer formation requires an ammonium cation with at least two hydrogen atoms per cation (e.

View Article and Find Full Text PDF

Manganese-Catalyzed Synthesis of γ-Hydroxy Phosphine Oxides by Addition of Phosphine Oxides to Allylic Alcohols.

Org Lett

September 2025

School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India.

A manganese(II)-catalyzed anti-Markovnikov addition of diarylphosphine oxides to primary and secondary allylic alcohols has been developed, which delivered synthetically valuable γ-hydroxy phosphine oxides. The reaction proceeds under mild, base-assisted conditions with a broad substrate scope and excellent functional group tolerance. Mechanistic studies indicate the involvement of a homogeneous catalytic system and a radical pathway.

View Article and Find Full Text PDF

An designed benzodioxin fused analogue of a des-(1-hydroxyethyl)-lincomycin analogue was synthesized in a asymmetric fashion from an achiral acylfuran, a 4-(-Pr)--methyl-proline, and catechol. The synthesis of the 6-amino-galactose portion of the lincomycin analogue necessitated the development of a novel stereospecific tandem Pd-glycosylation/1,4-addition reaction between catechol and an -Cbz-protected 6-amino-pyranone with a Pd-π-allyl leaving group at the -1 position. The desired -stereochemistry was installed by a subsequent stereoselective ketone reduction, alcohol elimination, and diastereoselective dihydroxylation of the -3/4 alkene.

View Article and Find Full Text PDF

Bioorganic chemistry of natural products that control plant pathogens.

J Pestic Sci

August 2025

Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture.

Developing new agrochemicals is essential for sustainable agriculture and global food security. Our group focused on natural products that control plant pathogens, conducting synthetic research across three key areas of interest: antimicrobial compounds, phytoalexins, and microbial signaling molecules. We established new methods for producing chiral allylic alcohols as useful synthetic intermediates for natural product synthesis the enantioselective synthesis of antimicrobial agents such as peniciaculins.

View Article and Find Full Text PDF

This study explores the development and reactivity of novel iron cyclopentadienone complexes incorporating isonitrile ligands for photo-activated borrowing hydrogen (BH) catalysis. By merging strategies of cyclopentadienone tuning with isonitrile functionalization, this work aims to enhance the efficiency of photoactivation processes. New complexes featuring 4-nitrophenyl isonitrile ligands combined with electron-rich cyclopentadienones (L and L) were synthesized and characterized through X-ray crystallography, IR, and Mössbauer spectroscopy.

View Article and Find Full Text PDF