Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: We investigated the suitability of representing discrete genetic test results in the electronic health record (EHR) as individual single nucleotide polymorphisms (SNPs) and as alleles, using the CYP2C9 gene and its polymorphic states, as part of a pilot study. The purpose of our investigation was to determine the appropriate level of data abstraction when reporting genetic test results in the EHR that would allow meaningful interpretation and clinical decision support based on current knowledge, while retaining sufficient information in order to enable reinterpretation of the results in the context of future discoveries.

Methods: Based on the SNP & allele models, we designed two separate lab panels within the laboratory information system, one containing SNPs and the other containing alleles, built separate rules in the clinical decision support system based on each model, and evaluated the performance of these rules in an EHR simulation environment using real-world scenarios.

Results: Although decision-support rules based on allele model required significantly less computational time than rules based on SNP model, no difference was observed on the total time taken to chart medication orders between rules based on these two models.

Conclusions: Both, SNP- and allele-based models, can be used effectively for representing genetic test results in the EHR without impacting clinical decision support systems. While storing and reporting genetic test results as alleles allow for the construction of simpler decision-support rules, and make it easier to present these results to clinicians, SNP-based model can retain a greater amount of information that could be useful for future reinterpretation.

Download full-text PDF

Source
http://dx.doi.org/10.3414/ME0570DOI Listing

Publication Analysis

Top Keywords

genetic test
20
decision support
16
clinical decision
12
rules based
12
snps alleles
8
reporting genetic
8
test ehr
8
based snp
8
decision-support rules
8
based
6

Similar Publications

Objective: Systemic sclerosis (SSc) is a complex autoimmune connective tissue disease. Genetic factors may play a pivotal role in determining susceptibility to these disorders. HLA associations with SSc, especially HLA class II, were investigated in different populations but not in Tunisia.

View Article and Find Full Text PDF

In-vivo evidence of synucleinopathy in parkinsonism due to VCP mutation.

J Neural Transm (Vienna)

September 2025

Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40139, Italy.

Multisystem proteinopathy 1 (MSP1) is a rare autosomal dominant disorder caused by mutations in the valosin-containing protein (VCP) gene typically presenting with inclusion body myopathy (IBM), Paget's disease of bone (PDB), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Parkinsonism is a rare feature of MSP1, occurring in 3-4% of cases, with limited post-mortem evidence suggesting neuronal synucleinopathy. We report a case of VCP-related parkinsonism providing the first in vivo demonstration of phosphorylated alpha-synuclein deposition in skin biopsy, a highly sensitive and specific in vivo biomarker of synucleinopathy.

View Article and Find Full Text PDF

Purpose: Next-generation sequencing (NGS) has revolutionized cancer treatment by enabling comprehensive cancer genomic profiling (CGP) to guide genotype-directed therapies. While several prospective trials have demonstrated varying outcomes with CGP in patients with advanced solid tumors, its clinical utility in colorectal cancer (CRC) remains to be evaluated.

Methods: We conducted a prospective observational study of CGP in our hospital between September 2019 and March 2024.

View Article and Find Full Text PDF

Background: Variants of uncertain significance (VUS) represent a major diagnostic challenge in the interpretation of genetic testing results, particularly in the context of inborn errors of immunity such as severe combined immunodeficiency (SCID). The inconsistency among computational prediction tools often necessitates expensive and time-consuming wet-lab analyses.

Objective: This study aimed to develop disease-specific, multi-class machine learning models using in silico scores to classify SCID-associated genetic variants and improve the interpretation of VUS.

View Article and Find Full Text PDF

Although several observational studies have suggested an association between plasma homocysteine (Hcy), vitamin B12, and folate levels and aortic diseases, including aortic dissection (AD), thoracic aortic aneurysm (TAA), and abdominal aortic aneurysm (AAA), the causality remains unclear. The aortic diameter was also included in the analysis. Therefore, this study employed Mendelian randomization (MR) analysis to investigate the effects of plasma Hcy, vitamin B12, and folate levels on aortic diseases.

View Article and Find Full Text PDF