98%
921
2 minutes
20
Cardiac energy metabolism depends mainly on fatty acid (FA) oxidation; however, regulation of FA metabolism in acromegalic (Acro) heart is unknown. The aim of the study was to evaluate cardiac expression of key proteins of FA metabolism in young and elder transgenic mice overexpressing bovine GH Acro. Expression of proteins regulating FA entry into the cells, their uptake by mitochondria and beta-oxidation were evaluated by western blot, while FA content by Fourier transform infrared microspectrometry. Regulatory mechanisms of key steps of FA metabolism were also studied. The expression of plasma-membrane FA carriers (fatty acid-binding protein and fatty acid transport protein-1) and acylCoA synthetase was higher in young and lower in elder Acro than in corresponding controls; likewise, expression of cytoplasm to mitochondria-1 (CPT-1), the key enzyme of mitochondrial FA uptake, and that of medium-chain acyl-CoA dehydrogenase and long-chain acyl-CoA dehydrogenase, two regulatory beta-oxidation dehydrogenases, followed a similar pattern. FA content was lower in young and higher in elder Acro than in wild-type, suggesting an increased utilisation in young animals. GH regulated expression of key proteins of FA metabolism through changes in peroxisome proliferator-activated receptor alpha (PPARalpha) expression, which varied accordingly. GH effect was confirmed by treatment of Acro mice with a receptor antagonist, which abolished changes in key proteins of FA metabolism in young Acro. GH increased phosphorylation of AMP-activated protein kinase and anti-acetyl-CoA-carboxylase, two regulatory kinases, leading to lower CPT-1 inhibition by malonyl-CoA, and intervened in regulating PPARalpha expression through the ERK 1/2 pathway. In conclusion, chronic GH excess increased FA metabolism in the young age, whereas its action was overwhelmed in elder ages likely by GH-independent mechanisms, leading to reduced expression of key enzyme of FA metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1677/JOE-08-0194 | DOI Listing |
Crit Rev Food Sci Nutr
September 2025
Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Institute of Hospital Management, Peking University Third Hospital, Beijing, China.
Background: Telemedicine is developing rapidly, presenting new opportunities and challenges for physicians and patients. Limited research has examined physicians' behavior during the process of adopting telemedicine and related factors.
Objective: This study aimed to identify perceived barriers and enablers of physicians' adoption of telemedicine and to develop intervention strategies.
Cell Mol Biol (Noisy-le-grand)
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.
View Article and Find Full Text PDFArch Pharm Res
September 2025
College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.
c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
September 2025
Department of Cardiology, Bei'an Hospital, Beidahuang Group, Heihe, 164000, Heilongjiang Province, China.
Myocardial ischemia/reperfusion injury (MIRI) worsens ischemic damage, with ferroptosis as a key mediator of this iron-dependent cell death. Lactylation, a novel epigenetic modification, remains poorly understood in MIRI-associated ferroptosis. This study aimed to elucidate the mechanistic link between lactylation and ferroptosis in MIRI.
View Article and Find Full Text PDF