98%
921
2 minutes
20
Fronto-striatal circuitry interacts with the midbrain dopaminergic system to mediate the learning of stimulus-response associations, and these associations often guide everyday actions, but the precise role of these circuits in forming and consolidating rules remains uncertain. A means to examine basal ganglia circuit contributions to associative motor learning is to examine these process in a lesion model system, such as Parkinson's disease (PD), a basal ganglia disorder characterized by the loss of dopamine neurons. We used functional magnetic resonance imaging (MRI) to compare brain activation of PD patients with a group of healthy aged-match participants during a visual-motor associative learning task that entailed discovering and learning arbitrary associations between a set of six visual stimuli and corresponding spatial locations by moving a joystick-controlled cursor. We tested the hypothesis that PD would recruit more areas than age-matched controls during learning and also show increased activation in commonly activated regions, probably in the parietal and premotor cortices, and the cerebellum, perhaps as compensatory mechanisms for their disrupted fronto-striatal networks. PD had no effect in acquiring the associative relationships and learning-related activation in several key frontal cortical and subcortical structures. However, we found that PD modified activation in other areas, including those in the cerebellum and frontal, and parietal cortex, particularly during initial learning. These results may suggest that the basal ganglia circuits become active more so during the initial formation of rule-based behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065103 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2009.03.050 | DOI Listing |
Neuroimage
September 2025
Developing Brain Institute, Children's National Hospital, Washington, D.C. USA; Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, D.C. USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, W
The purpose of this study was to compare brain metabolite concentrations between healthy and CHD neonates before and after cardiac surgery. Healthy term newborns and neonates with CHD were recruited prospectively. T-weighted brain images and MRS data were acquired in the cerebellum, right frontal lobe and basal ganglia.
View Article and Find Full Text PDFNeuroscience
September 2025
Department of Psychology & Health Studies, University of Saskatchewan, Saskatoon, Canada. Electronic address:
Attentional processes are crucial to ensure successful reading, and theories of dyslexia propose that dysfunctional attention networks may contribute to the observed reading deficits. The goals of this study were to localize a region of the frontal-eye-field (FEF) involved in both reading and attention and examine its connectivity with regions in the reading and attention networks, given the known role of the FEF in attentional processes and theorized role in reading. In Experiment 1, we revisited the results of our previous hybrid reading and attention study.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
September 2025
Department of Psychology, Yunnan Normal University, Kunming, Yunnan Province, P.R. China. Electronic address:
Background: Internet gaming disorder (IGD) is a clinically heterogeneous condition, yet the underlying neurobiological subtypes remain to be elucidated. Investigating the sub-patterns of spontaneous neural activity and the state switching from individual to group patterns may provide deeper insights into the etiology of IGD.
Methods: Resting-state functional MRI data were collected from 519 participants (257 with IGD; 262 recreational game users, RGU).
Biochem Pharmacol
September 2025
School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China. Electronic address:
Parkinson's Disease (PD), the second most common neurodegenerative disease after Alzheimer's disease, is clinically characterized by resting tremor, rigidity and postural balance disorder. Its pathological essence is the progressive degenerative death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), leading to a significant decrease in striatal dopamine (DA) levels. This results in the dysfunction of basal ganglia-thalamus-cortex (BGTC) circuit.
View Article and Find Full Text PDFClinical apathy might result from either a diminished willingness to exert effort for known rewards or from reduced motivation to explore potentially beneficial future opportunities. To identify the underlying cognitive and neural bases of apathy, we used task-based fMRI to examine motivated choice computations in patients with chronic traumatic brain injury (TBI)-a condition frequently associated with apathy-and compared their behavior and neural activity to that of healthy controls (CTRLs). Participants performed two choice tasks involving distinct types of motivational tradeoffs: i) An effort-value tradeoff task (the 'Apples Task') requiring them to decide how much physical effort they were willing to exert for varying reward magnitudes, and ii) An explore-exploit tradeoff task (the 'Novelty-Bandit Task') requiring them to choose between exploiting options with a known history of reward or exploring novel options with uncertain but potentially higher future value.
View Article and Find Full Text PDF