98%
921
2 minutes
20
In order to improve yields and to reduce the cost of oxalate decarboxylase (OxDC, EC 4.1.1.2), the induction of OxDC in the white-rot fungus Trametes versicolor was studied in this work. OxDC was induced by addition of inorganic acids including hydrochloric acid, sulfuric acid, and phosphoric acid to culture media. The results showed that all the acids could enhance OxDC expression. The activity of the acid-induced OxDC rose continuously. All of the OxDC volumetric activities induced by the inorganic acids were higher than 20.0 U/L and were two times higher than that obtained with oxalic acid. OxDC productivity was around 4.0 U*L(-1)*day(-1). The highest specific activity against total protein was 3.2 U/mg protein at day 8 after induction of sulfuric acid, and the specific activity against mycelial dry weight was 10.6 U/g at day 9 after induction of hydrochloric acid. The growth of mycelia was inhibited slightly when the pH values in culture media was around 2.5-3.0, while the growth was inhibited heavily when the pH was lower than 2.5.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-009-8571-6 | DOI Listing |
Elevated acidity from natural and anthropogenic sources can be a significant stressor for plants, affecting essential processes such as nutrient uptake and growth. While low pH (< 4) is generally considered stressful for plants, differential impacts of distinct acid types-organic versus inorganic, strong versus weak-on plant growth and development remain unclear. To address this knowledge gap, we evaluated the responses of two Brassicaceae species to organic (acetic) and inorganic (hydrochloric, sulfuric) acids at three pH levels (pH 2.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu substitution at Mo sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation.
View Article and Find Full Text PDFWater Res
August 2025
Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.
Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.
View Article and Find Full Text PDFTalanta
August 2025
Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica, Junín 956, Buenos Aires, Argentina; Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, UBA - CONICET, Junín 956, Buenos Aires, Argentina. Electronic address:
The quantification of orthophosphate is essential for applications like water quality assessment, soil fertility analysis, metabolic monitoring and enzyme activity evaluation. Chemical quantification methods include the reaction between orthophosphate and molybdate under acidic conditions to form 12-molybdophosphoric acid units, which auto-assembles forming nanometer size particles. The adsorption of malachite green to these nanoparticles allows their spectrophotometric detection constituting one of the most widely used methods to quantify phosphate.
View Article and Find Full Text PDFChemistry
September 2025
IISER Tirupati: Indian Institute of Science Education and Research Tirupati, Tirupati, 517619, INDIA.
Nitric oxide (NO) is one of the crucial biological signaling molecules, yet achieving its selective and spatiotemporal detection in in-situ/invitro or biological systems at specific pH remains a significant challenge. Hence, a probe capable of directly detecting NO would be immensely valuable in understanding its reactivity and biological functions. Here, to develop a Cu(II)-based probe for selective NO detection, we synthesized a Cu(II)-complex (1) using a N3-tridentate ligand having a pendant dansyl fluorophore (L) and evaluated it's NO reactivity under varying pH conditions.
View Article and Find Full Text PDF