Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A library of all possible substitutions of guanine by iso-guanine (iG) in the thrombin aptamer was prepared by split and mix synthesis. A colorimetric assay was used to screen for functional oligomers in the library. Colorimetrically active oligonucleotides were selected and sequenced by the Maxam-Gilbert method. The sequenced oligonucleotides were individually resynthesized, and their affinities for thrombin were assayed by isothermal titration calorimetry. Three aptamer sequences containing iG were found to have enhanced binding activity to human alpha-thrombin compared to the parent aptamer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/cc800178mDOI Listing

Publication Analysis

Top Keywords

combinatorial synthesis
4
synthesis thrombin-binding
4
thrombin-binding aptamers
4
aptamers iso-guanine
4
iso-guanine library
4
library substitutions
4
substitutions guanine
4
guanine iso-guanine
4
iso-guanine thrombin
4
thrombin aptamer
4

Similar Publications

Data-Driven Exploration of Critical Factors for Single-Phase High-Entropy Oxide Anode Materials.

J Phys Chem Lett

September 2025

Institute of multidisciplinary research for advanced materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.

High-entropy oxides (HEOs) are attracting significant attention owing to their compositional tunability and structural robustness. However, the identification of specific compositional combinations that yield a single-phase structure in HEOs remains unclear owing to the immense combinatorial complexity inherent in multielement systems. This study adopts a materials informatics approach that integrates experimental synthesis data with machine learning to identify key compositional factors enabling single-phase HEO formation via solid-state synthesis.

View Article and Find Full Text PDF

Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).

View Article and Find Full Text PDF

d-Amino acid oxidase from (DAAO) is valuable for pharmaceutical and chemical synthesis due to its high enantioselectivity, but its poor thermostability limits extensive application. This study proposed a synergistic strategy of "sequence consensus design coupled with structure modification" to enhance DAAO thermostability. Through homologous sequence analysis and greedy algorithm-based optimization, a triple mutant M3 (S18T/V7I/Y132F) was obtained, showing a 3.

View Article and Find Full Text PDF

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

This review meticulously examines the development, design, and pharmacological assessment of both well known antiviral and antihypertensive medications all time employing new chemical techniques and structure-based drug design to design and synthesize vital therapeutic entities such as aliskiren (renin inhibitor), captopril (a2-ACE-Inhibitor), dorzolamide (inhibitor of carbonic anhydrase) the review demonstrates initial steps regarding the significance of stereoselective synthesis, metal chelating pharmacophores, and rational molecular properties. More importantly, protease inhibitors (i.e.

View Article and Find Full Text PDF