Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We examined changes in branch hydraulic, leaf structure and gas exchange properties in coast redwood (Sequoia sempervirens) and giant sequoia (Sequoiadendron giganteum) trees of different sizes. Leaf-specific hydraulic conductivity (k(L)) increased with height in S. sempervirens but not in S. giganteum, while xylem cavitation resistance increased with height in both species. Despite hydraulic adjustments, leaf mass per unit area (LMA) and leaf carbon isotope ratios (delta(13)C) increased, and maximum mass-based stomatal conductance (g(mass)) and photosynthesis (A(mass)) decreased with height in both species. As a result, both A(mass) and g(mass) were negatively correlated with branch hydraulic properties in S. sempervirens and uncorrelated in S. giganteum. In addition, A(mass) and g(mass) were negatively correlated with LMA in both species, which we attributed to the effects of decreasing leaf internal CO(2) conductance (g(i)). Species-level differences in wood density, LMA and area-based gas exchange capacity constrained other structural and physiological properties, with S. sempervirens exhibiting increased branch water transport efficiency and S. giganteum exhibiting increased leaf-level water-use efficiency with increasing height. Our results reveal different adaptive strategies for the two redwoods that help them compensate for constraints associated with growing taller, and reflect contrasting environmental conditions each species faces in its native habitat.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-3040.2009.01950.xDOI Listing

Publication Analysis

Top Keywords

gas exchange
12
leaf structure
8
structure gas
8
branch hydraulic
8
increased height
8
height species
8
amass gmass
8
gmass negatively
8
negatively correlated
8
properties sempervirens
8

Similar Publications

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.

View Article and Find Full Text PDF

Drought has a major impact on crop yields. Silicon (Si) application has been proposed to improve drought resilience via several mechanisms including modifying the level of stomatal gas exchange. However, the impact of Si on transpiration and stomatal conductance varies between studies.

View Article and Find Full Text PDF

Traditional studies of pulmonary fibrosis (PF) have focused on alveolar epithelial cells injury and abnormal myofibroblast aggregation, but recent studies have revealed that imbalances in pulmonary capillary homeostasis also play pivotal roles in this disease. The pulmonary microvasculature, composed of aerocyte capillary (aCap) and general capillary (gCap) endothelial cells, forms the core structure of the alveolar-capillary membrane. It performs key roles in gas exchange and nutrient/metabolite transport, while modulating the trafficking of inflammatory factors and immune cells and regulating alveolar damage repair.

View Article and Find Full Text PDF

Background: Stroke is a common acute cerebrovascular disease, and rehabilitation therapy plays a crucial role in the recovery of stroke patients.

Methods: In this retrospective study, we first enrolled 80 stroke patients. These participants were then randomly divided into two groups: the treatment group underwent finger acupressure combined with lower limb rehabilitation training machine, and the control group received basic rehabilitation therapy.

View Article and Find Full Text PDF

Coronary artery bypass grafting (CABG) is a common surgical approach for advanced coronary artery disease unresponsive to conservative or percutaneous treatments. Despite its benefits in symptom relief and long-term outcomes, CABG is associated with notable postoperative respiratory complications. As such, respiratory physiotherapy plays a crucial role in recovery.

View Article and Find Full Text PDF