98%
921
2 minutes
20
Introduction: Growth arrest specific-6 (GAS-6), a vitamin K-dependent protein, is a potential mediator in progressive and chronic renal disease, specifically as a mediator of abnormal mesangial cell proliferation. Nitric oxide and angiotensin II affect mesangial cell proliferation. However, an association between nitric oxide synthase or angiotensin II on GAS-6 expression in the kidney has not previously been examined. Thus, our aim was to examine the effects of antihypertensive angiotensin-converting enzyme inhibitors and chronic nitric oxide synthase inhibition on the kidney expression of GAS-6 and its receptors AXL, MER and RSE.
Methods: Four groups of adult male C57BL/6J mice were studied: group 1, untreated controls (tap water for six weeks); group 2, treated orally with a nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME, 0.325 mg/ml for six weeks); group 3, treated orally with captopril (0.6875 mg/ml for six weeks); group 4, co-treated orally with L-NAME and captopril (same doses for six weeks). At the end of the study, kidneys were placed in fixative and processed to paraffin for immunohistochemical staining.
Results: GAS-6 and its receptors were not present in control and L-NAME-treated mice. Positive GAS-6 staining was detectable only in those mice receiving some form of chronic dosing with captopril, whether they were treated with captopril only or with captopril and L-NAME. Immunohistochemical detection across cases for MER and RSE was rare, whereas AXL-positive staining in the kidney mirrored GAS-6 staining/expression. The staining of GAS6 and AXL was predominantly localised to the renal tubular cells.
Conclusions: These findings suggest that GAS-6 may not be a final common pathway for nitric oxide synthase inhibition-induced renal disease. Renal tubular GAS-6 expression following captopril treatment was unexpected and could be beneficial in preventing tubular atrophy following the onset of persistent systemic hypertension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1470320308098342 | DOI Listing |
J Med Chem
September 2025
Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
Nitric oxide (NO) is a multifunctional signaling molecule in oncology, influencing tumor progression, apoptosis, and immune responses. In contrast, chlorambucil (Cbl), a DNA-alkylating chemotherapeutic, induces cytotoxicity through DNA damage. Here, we report a photoresponsive nanoparticle platform for sequential codelivery of NO and Cbl, where NO is released within 10 min of irradiation, followed by Cbl release within 30 min.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Departamento de Genética, Evolução, Microbiologia e Immunologia, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo 13083-862, Brazil.
Violacein exhibits antitumor activity, indicating potential for future clinical application. However, an efficient delivery system is required for the clinical use of this hydrophobic compound. Effective delivery systems can enhance the solubility and bioavailability of hydrophobic compounds like violacein, facilitating its clinical application for antitumor therapy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, LIFM, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.
Oximes serve as indispensable intermediates in synthetic chemistry, owing to their distinctive C═N─OH structure, conferring highly versatile reactivity. Synthesis of oxime via the electrochemical method has potential advantages, accompanied by the upgrading of industrialization. Herein, we propose a novel strategy by introducing nickel (Ni) mediation to obtain high-spin iron (Fe)(III) in phthalocyanine structure for synthesizing glyoxylate oxime via electrocatalytic nitric oxide (NO) coupling with keto acid.
View Article and Find Full Text PDFCell Signal
September 2025
Department of Gastroenterology, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China; Guangxi Key Labora
Intestinal dysmotility is a major complication that significantly impacts the prognosis of acute pancreatitis (AP). The neuronal nitric oxide synthase (nNOS) -expressing neurons within the enteric nervous system promote intestinal relaxation via the release of nitric oxide (NO). As the rate-limiting enzyme of NO synthesis, nNOS directly regulates NO production, thereby modulating intestinal motility.
View Article and Find Full Text PDFJ Allergy Clin Immunol Pract
September 2025
COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Background: Studies have described sex differences in childhood asthma, allergy, and atopic dermatitis, but the development and clinical phenotype of these differences remain poorly understood.
Objective: To characterize sex differences in atopic disease throughout childhood and study the potential role of sex-steroid metabolites.
Methods: We examined sex differences in asthma, allergy, and atopic dermatitis using longitudinal generalized estimating equation models in the COPSAC (n=411) and COPSAC (n=700) birth cohorts.