Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Impairment of mitochondrial activity affects lipid-metabolizing tissues and mild mitochondrial uncoupling has been proposed as a possible strategy to fight obesity and associated diseases. In this report, we characterized the 3T3-L1-adipocyte ;de-differentiation' induced by carbonyl cyanide (p-trifluoromethoxy)-phenylhydrazone (FCCP), a mitochondrial uncoupler. We found a decrease in triglyceride (TG) content in adipocytes incubated with this molecule. We next analyzed the expression of genes encoding adipogenic markers and effectors and compared the differentially expressed genes in adipocytes treated with FCCP or TNFalpha (a cytokine known to induce adipocyte de-differentiation). Furthermore, a significant decrease in the transcriptional activity of PPARgamma and C/EBPalpha transcription factors was found in adipocytes with impaired mitochondrial activity. However, although these modifications were also found in TNFalpha-treated adipocytes, rosiglitazone and 9-cis retinoic acid (PPARgamma and RXR ligands) were unable to prevent triglyceride loss in FCCP-treated cells. Metabolic assays also revealed that TG reduction could be mediated by a downregulation of lipid synthesis rather than an upregulation of fatty acid oxidation. Finally, lipolysis stimulated by the uncoupler also seems to contribute to the TG reduction, a process associated with perilipin A downregulation. These results highlight some new mechanisms that might potentially be involved in adipocyte de-differentiation initiated by a mitochondrial uncoupling.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.027508DOI Listing

Publication Analysis

Top Keywords

mitochondrial uncoupling
12
adipocyte de-differentiation
12
mild mitochondrial
8
mitochondrial activity
8
mitochondrial
5
uncoupling induces
4
induces 3t3-l1
4
3t3-l1 adipocyte
4
de-differentiation
4
de-differentiation ppargamma-independent
4

Similar Publications

Epigallocatechin-3-gallate (EGCG), the main catechin in green tea, is associated with antidiabetic and anti-obesity effects, although its acute hepatic actions remain unclear. We investigated short-term effects of EGCG (10-500 μm) using isolated perfused rat livers and complementary assays in mitochondrial, microsomal, and cytosolic fractions. EGCG markedly inhibited gluconeogenesis from lactate (up to 52%), glycerol (33%), and alanine (47%), while it stimulated glycolysis, glycogenolysis, and oleic acid oxidation (+42% total ketone bodies).

View Article and Find Full Text PDF

Cooperative contribution of multiple energy substrate pathways to floral thermogenesis in sacred lotus.

Plant J

September 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Fores

Floral thermogenesis in lotus (Nelumbo nucifera) is a highly energy-intensive process, requiring substantial metabolic reconfiguration and substrate input. However, the mechanisms coordinating energy substrate supply during this process remain unclear. Here, we integrated microscale proteomics, time-series transcriptomics, and mitochondrial feeding assays to elucidate the substrate provisioning strategies supporting thermogenesis in lotus receptacles.

View Article and Find Full Text PDF

Reduced mitochondrial quality and quantity in tumors is associated with dedifferentiation and increased malignancy. However, it remains unclear how to restore mitochondrial quantity and quality in tumors and whether mitochondrial restoration can drive tumor differentiation. Our study shows that restoring mitochondrial function using retinoic acid (RA) to boost mitochondrial biogenesis and a mitochondrial uncoupler to enhance respiration synergistically drives neuroblastoma differentiation and inhibits proliferation.

View Article and Find Full Text PDF

Early downregulation of hair cell (HC)-specific genes in the vestibular sensory epithelium during chronic ototoxicity.

J Biomed Sci

September 2025

Laboratori 4106, Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Feixa Llarga S/N, 08907, Hospitalet de Llobregat, Catalunya, Spain.

Background: Exposure of mammals to ototoxic compounds causes hair cell (HC) loss in the vestibular sensory epithelia of the inner ear. In chronic exposure models, this loss often occurs by extrusion of the HC from the sensory epithelium towards the luminal cavity. HC extrusion is preceded by several steps that begin with detachment and synaptic uncoupling of the cells from the afferent terminals of their postsynaptic vestibular ganglion neurons.

View Article and Find Full Text PDF

Endurance exercise significantly enhances energy expenditure with lipids serving as a crucial energy source for skeletal muscle during exercise. The adipocytokine Zinc-α2-glycoprotein (ZAG) in endurance exercise remains largely uncertain. This study utilized ZAG knockout and overexpression mice to investigate ZAG's role in regulating lipid metabolism in skeletal muscle during endurance exercise.

View Article and Find Full Text PDF