Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Study Design: Integrating theoretical and experimental approaches for annulus fibrosus (AF) functional tissue engineering.

Objective: Apply a hyperelastic constitutive model to characterize the evolution of engineered AF via scalar model parameters. Validate the model and predict the response of engineered constructs to physiologic loading scenarios.

Summary Of Background Data: There is need for a tissue engineered replacement for degenerate AF. When evaluating engineered replacements for load-bearing tissues, it is necessary to evaluate mechanical function with respect to the native tissue, including nonlinearity and anisotropy.

Methods: Aligned nanofibrous poly-epsilon-caprolactone scaffolds with prescribed fiber angles were seeded with bovine AF cells and analyzed over 8 weeks, using experimental (mechanical testing, biochemistry, histology) and theoretical methods (a hyperelastic fiber-reinforced constitutive model).

Results: The linear region modulus for phi = 0 degrees constructs increased by approximately 25 MPa, and for phi = 90 degrees by approximately 2 MPa from 1 day to 8 weeks in culture. Infiltration and proliferation of AF cells into the scaffold and abundant deposition of s-GAG and aligned collagen was observed. The constitutive model had excellent fits to experimental data to yield matrix and fiber parameters that increased with time in culture. Correlations were observed between biochemical measures and model parameters. The model was successfully validated and used to simulate time-varying responses of engineered AF under shear and biaxial loading.

Conclusion: AF cells seeded on nanofibrous scaffolds elaborated an organized, anisotropic AF-like extracellular matrix, resulting in improved mechanical properties. A hyperelastic fiber-reinforced constitutive model characterized the functional evolution of engineered AF constructs, and was used to simulate physiologically relevant loading configurations. Model predictions demonstrated that fibers resist shear even when the shearing direction does not coincide with the fiber direction. Further, the model suggested that the native AF fiber architecture is uniquely designed to support shear stresses encountered under multiple loading configurations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424511PMC
http://dx.doi.org/10.1097/BRS.0b013e31818e61f7DOI Listing

Publication Analysis

Top Keywords

constitutive model
12
model
9
integrating theoretical
8
theoretical experimental
8
functional tissue
8
annulus fibrosus
8
evolution engineered
8
model parameters
8
engineered constructs
8
hyperelastic fiber-reinforced
8

Similar Publications

Amongst the major histopathological hallmarks in Alzheimer's disease are intracellular neurofibrillary tangles consisting of hyperphosphorylated and aggregated Tau, synaptic dysfunction, and synapse loss. We have previously shown evidence of synaptic mitochondrial dysfunction in a mouse model of Tauopathy that overexpresses human Tau (hTau). Here, we questioned whether the levels or activity of Parkin, an E3 ubiquitin ligase involved in mitophagy, can influence Tau-induced synaptic mitochondrial dysfunction.

View Article and Find Full Text PDF

TBX3 advances the developmental chromatin landscape toward the hepatic fate.

Dev Cell

June 2025

Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC V5Z1L3, Canada; Cell and Developmental Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada; School of

By mapping histone modifications in a human stem cell model of hepatic differentiation, we identified an enhancer landscape that is dynamic and stage specific, with many primed at the definitive endoderm stage. While hepatic enhancers gained active histone modifications, non-hepatic enhancers lost H3K4me1 after hepatic specification. T-box transcription factor 3 (TBX3) was found to bind to hepatic enhancers and promoters.

View Article and Find Full Text PDF

An Escherichia coli Nissle 1917-based live therapeutics platform with integrated phage resistance and programmable temperature sensitivity.

J Control Release

September 2025

State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China. Electronic address:

Live bacterial therapeutics (LBT) represent a transformative modality for managing refractory chronic diseases. However, the absence of optimized microbial chassis systems is a significant barrier to clinical translation. To bridge this gap, we engineered Escherichia coli Nissle 1917 (EcN) into a versatile platform that meets the requirements for strain development and clinical application.

View Article and Find Full Text PDF

Introduction: The potassium chloride co-transporter 2 (KCC2) is the principal Cl extrusion mechanism employed by mature neurons in the central nervous system (CNS) and plays a critical role in determining the efficacy of fast synaptic inhibition mediated by type A -aminobutyric acid receptors (GABARs) to protect against epileptogenesis. It has previously been demonstrated that epileptic seizures down-regulate KCC2 and induce neuronal apoptosis through the extrinsic apoptotic pathway. However, the mechanism by which neuronal death is induced by KCC2 loss remains unknown.

View Article and Find Full Text PDF

Intracellular vesicular transport by kinesin-1 motors through numerous 3-dimensional (3D) microtubule (MT) intersections must be regulated to support proper vesicle delivery. Knowing kinesin-1 can be regulated via autoinhibition, does kinesin-1 exhibit autoinhibition on cargo, and could this regulate vesicular transport through 3D MT intersections in vitro? To answer this question, we compared liposome transport by ∼10 nearly full-length kinesin-1 motors with KLC bound (KinΔC) versus constitutively active control (K543). In 3D MT intersections, KinΔC-liposomes terminate (48%), go straight (43%), but rarely turn (9%), starkly contrasting K543-liposomes which go straight (57%), turn (31%), but rarely terminate (12%).

View Article and Find Full Text PDF