98%
921
2 minutes
20
The knowledge of dynamic changes in the vascular system has become increasingly important in ensuring the safety and efficacy of endovascular devices. We developed new methods for quantifying in vivo three-dimensional (3D) arterial deformation due to pulsatile and nonpulsatile forces. A two-dimensional threshold segmentation technique combined with a level set method enabled calculation of the consistent centroid of the cross-sectional vessel lumen, whereas an optimal Fourier smoothing technique was developed to eliminate spurious irregularities of the centerline connecting the centroids. Longitudinal strain and novel metrics for axial twist and curvature change were utilized to characterize 3D deformations of the abdominal aorta, common iliac artery, and superficial femoral artery (SFA) due to musculoskeletal motion and deformations of the coronary artery due to cardiac pulsatile motion. These illustrative applications show the significance of each deformation metric, revealing significant longitudinal strain and axial twist in the SFA and coronary artery, and pronounced changes in vessel curvature in the coronary artery and in the inferior region of the SFA. The proposed methods may aid in designing preclinical tests aimed at replicating dynamic in vivo conditions in the arterial tree for the purpose of developing more durable endovascular devices including stents and stent grafts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-008-9590-0 | DOI Listing |
Protein Cell
August 2025
Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.
Cardiovascular disease (CVD) research is hindered by limited comprehensive analyses of plasma proteome across disease subtypes. Here, we systematically investigated the associations between plasma proteins and cardiovascular outcomes in 53,026 UK Biobank participants over a 14-year follow-up. Association analyses identified 3,089 significant associations involving 892 unique protein analytes across 13 CVD outcomes.
View Article and Find Full Text PDFJ Intern Med
September 2025
Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany.
Background: High-density lipoprotein (HDL) function, rather than its concentration, plays a crucial role in the development of coronary artery disease (CAD). Diminished HDL antioxidant properties, indicated by elevated oxidized HDL (nHDL) and diminished paraoxonase-1 (PON-1) activity, may contribute to vascular dysfunction and inflammation. Data on these associations in CAD patients, including acute coronary syndrome (ACS), remain limited.
View Article and Find Full Text PDFEur J Case Rep Intern Med
August 2025
Cardiac Sciences Division, Department of Medicine, King Abdulaziz Hospital, Ministry of National Guard Health Affairs (MNGHA), Al Ahsa, Saudi Arabia.
Unlabelled: Anomalous origin of the coronary arteries is a rare congenital condition that can present as non-specific chest pain or shortness of breath or remain asymptomatic. Early identification is critical as certain variants are linked with a high risk of sudden cardiac death. Here, we report the case of a 53-year-old female with hypertension, hypothyroidism, obesity (class II) and a history of intermittent chest pain radiating to the left arm for two years.
View Article and Find Full Text PDFEur J Case Rep Intern Med
August 2025
Hanoi Heart Hospital, Hanoi, Vietnam.
Background: Perforation of artery causing bleeding is a rare but serious complication of percutaneous coronary intervention (PCI), with potentially life-threatening consequences. Prompt recognition and management are crucial, particularly in high-risk patients or complex procedures. Coils are essential tools for sealing perforated or ruptured vessels, preventing further haemorrhage and stabilising the patient.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, Zhejiang, China.
Cardiovascular diseases (CVDs) are the main cause of mortality worldwide, with coronary artery disease (CAD) noted as one of the major causes of CVD. An early and accurate diagnosis is important for improved outcomes in CAD patients. Invasive coronary angiography and coronary computed tomography angiography are accurate diagnostic tools for CAD.
View Article and Find Full Text PDF